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Abstract

Large language models (LLMs) are increasingly used in applications where LLM inputs may span many different tasks.
Recent work has found that the choice of LLM is consequential, and different LLMs may be good for different input samples.
Prior approaches have thus explored how engineers might select an LLM to use for each sample (i.e. routing). While
existing routing methods mostly require training auxiliary models on human-annotated data, our work explores whether it
is possible to perform unsupervised routing. We propose SMOOTHIE, a weak supervision-inspired routing approach that
requires no labeled data. Given a set of outputs from different LLMs, SMOOTHIE constructs a latent variable graphical
model over embedding representations of observable LLM outputs and unknown “true” outputs. Using this graphical
model, we estimate sample-dependent quality scores for each LLM, and route each sample to the LLM with the highest
corresponding score. We find that SMOOTHIE’s LLM quality-scores correlate with ground-truth model quality (correctly
identifying the optimal model on 9/14 tasks), and that SMOOTHIE outperforms baselines for routing by up to 10 points
accuracy.

1 Introduction
Large language models (LLMs) are increasingly being deployed in multi-capability regimes where data inputs may span a
diverse range of tasks, each of which requires different capabilities [8]. For instance, an LLM-powered chatbot may be asked
to write code, answer questions about different domains, summarize documents, perform extraction, and more [3, 8, 14, 30].
One challenge is that while engineers often have access to numerous pre-trained LLMs (i.e., through Huggingface or various
APIs), they do not know which LLM is optimal for each possible user input [86]. Because the quality of generations
can vary significantly between LLMs, choosing the right LLM for each input sample is important to ensure high task
performance [41].

Recent work has explored various ways to utilize ensembles of pretrained LLMs in multi-capability settings, by (1) collecting
a diverse pool of LLMs and (2) identifying which LLM to route each sample to [55, 86]. However, most existing approaches
require labeled data; Engineers typically either (1) train an auxiliary model using labeled data to rank or predict the LLM
to which each sample should be routed [41, 79], or (2) directly use labeled data to determine which LLM is the best on
average [86]. As a result, engineers designing routing protocols face the practical difficulty of constructing labeled datasets.

Given a candidate pool of LLMs and an unlabeled test dataset, this paper explores how to best select LLM outputs for each
sample in an entirely unsupervised manner—without labeled data, or models trained on labeled data. To make progress in
addressing this question, we face two technical challenges:

• Unknown LLM quality: The first challenge is estimating the quality of each LLM. Access to labeled data allows
engineers to identify higher performing LLMs by measuring the accuracy/quality of LLM outputs. In this paper, we
study the question of how to estimate quality without labeled validation data.

• Sample-conditional generator performance: The second challenge is determining how to select the best LLM for each
individual test sample. LLM outputs can vary in quality over different samples, which could render population-level
estimates of LLM quality misleading.

In this work, we propose SMOOTHIE, a method for routing samples to LLMs in a label-free manner (Figure 1). Below, we
describe how SMOOTHIE addresses the two challenges described above.

• Quality estimation: Using the LLM outputs for each test sample as “voters,” SMOOTHIE estimates the quality of each
generator using methods from Weak Supervision (WS). Concretely, SMOOTHIE constructs a latent variable graphical
model over observable LLM outputs and an unknown true output. By modeling the embedding vector difference
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Figure 1: For a given input x, SMOOTHIE estimates the quality of every LLM ensemble’s generation, and uses this quality
weight to route x to a single LLM.

between each LLM output and the true output as a multivariate Gaussian, we can derive a closed-form estimator
adapted from [85] for learning LLM quality scores efficiently.

• Conditioning: We condition these quality estimates to be particular to a given test sample by only using the nearest
neighbors of a test sample in the training data as inputs to the estimator (i.e., kernel smoothing). We then route each
test sample to the LLM with the highest quality score estimate on that sample. We call the version of SMOOTHIE
that produces quality estimates using all available test data SMOOTHIE-GLOBAL, and we call the version that uses a
sample’s nearest neighbors SMOOTHIE-LOCAL.

We empirically evaluate SMOOTHIE in three stages.

• LLM selection: First, we assess SMOOTHIE-GLOBAL’s ability to identify—from an ensemble of mixed quality
LLMs—the optimal LLM for a given task overall. On traditional generation tasks such as summarization, reading
comprehension, and data-to-text generation, we find that SMOOTHIE-GLOBAL’s learned LLM quality-weights correlate
with actual LLM performance (ρ = 0.72)), and on the AlpacaEval benchmark, SMOOTHIE-GLOBAL identifies the
best-performing instruction model 70% of the time [50]. The highest quality LLM identified by SMOOTHIE-GLOBAL—
all computed without labeled data—can beat random-selection by up to 15 points win-rate on AlpacaEval, and by up to
8 points on SQuAD.

• Routing: Second, we study whether SMOOTHIE-LOCAL’s sample-conditional scoring mechanism allows it to route
samples in mixed-task datasets to higher-performing LLMs (i.e., the multi-capability regime). We find that SMOOTHIE-
LOCAL can improve the quality of produced generations by up to 7 points accuracy over SMOOTHIE-GLOBAL, and that
SMOOTHIE-LOCAL outperforms baseline unsupervised routing methods by up to 10 points accuracy and supervised
routing methods by up to 5.0 points accuracy.

• Prompt selection: Finally, we assess whether SMOOTHIE’s quality-estimation mechanism can be applied to select
the optimal prompt template in a candidate pool while using a fixed LLM. We find that SMOOTHIE-GLOBAL can
outperform other prompt selection approaches by up to 18 points, allowing a 410M parameter model to match the
performance of 6.9B parameter model.

2 Related Work
We provide an abbreviated related work, with a full treatment in Appendix C.

Routing Routing has been classically utilized in Mixture-of-Experts models [25, 37, 42, 82], which involve jointly
training a set of models as well as a router. Recently, routing mechanisms have been used at inference time to decide
which pre-trained LLM to use for a given sample [79]. Some approaches involve training an auxiliary model using labeled
training data to either score or rank the performance of each LLM on each test sample [38, 74]. Others do not involve
training a model but instead use nearest neighbor methods, selecting the LLM that does the best on a test sample’s labeled
neighbors [48, 86]. In contrast, SMOOTHIE does not require any labels.
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Ensembling Ensembling is another way of utilizing a pool of LLMs. Existing work has primarily focused on ensembling
outputs for classification tasks [2, 68, 98]. Ensembling generative outputs typically requires training an auxiliary model [41],
combining or switching among outputs when decoding [36, 83], or averaging in weight space [95].

Prompt selection In addition to selecting the best LLM for a sample, prior works have studied how to select the best
prompt or in-context examples. While the simplest approach is to use a held-out labeled dataset [67], there are also retrieval-
based approaches to selecting the best in-context examples [90], as well as approaches based on mutual information [89]
and probability-based measures [103], although the latter two are limited to classification.

Weak supervision SMOOTHIE utilizes statistical techniques inspired by weak supervision, which programmatically
generate labels for an unlabeled dataset by aggregating the predictions of several weak “voters” via a latent variable graphical
model [71, 73]. Weak supervision has mostly been studied in classification settings [26, 72] but more recently has been
extended to tasks such as learning rankings and manifolds [85, 94]. We derive our estimation procedure from the Gaussian
model in [85], applying it to LLM embeddings and the routing setting.

3 Preliminaries

3.1 Problem setup
Let V be the token vocabulary space, and let V̄ = V × · · · × V be the space of all vocabulary sequences. We consider a
generative task with input text x ∈ X ⊂ V̄ and reference output text y ∈ Y ⊂ V̄ . We have a candidate pool of m LLMs,
G = {g1, . . . , gm}, where each gi ∈ G : X → Y produces a generative output sequence gi(x) for a given input text
sequence x. We are given an unlabeled test dataset Dtest = {xi}ni=1, where the ground-truth reference outputs are unknown.

Our goal is to route each sample x ∈ Dtest to one of the LLMs in G. Specifically, we wish to construct a router
route : Gm ×X → G that selects the LLM that yields the highest quality generation on x for each test sample x, without
any labeled data.

3.2 Graphical model
We present a probabilistic graphical model (see Figure 1 (center)) that describes how the LLM outputs, g1(x), . . . , gm(x),
are related to a true output y in terms of each LLM’s quality on a given input x, which we call θi(x), corresponding to each
gi(x). Let zg0 : V̄ → Rd map from a sequence of tokens to a d-dimensional embedding using a common model g0 such as
SentenceBERT [76]. Define λi(x) := zg0([x, gi(x)]) to be the observable embedding of x and the LLM output, and define
z⋆(x) := zg0([x, y]) to be the latent ground-truth embedding of x and reference output y. Similar to the approach in [85],
we model the distribution over embedding vectors, Pr(z⋆(x), λ1(x), . . . , λm(x)|x) as

Pr(z⋆(x), λ1(x), . . . , λm(x)|x) = 1

Z
exp

( m∑
i=1

−θi(x)∥λi(x)− z⋆(x)∥2
)

(1)

where Z is the log partition function and the θi(x)s—the LLM quality scores—are canonical parameters of the graphical
model. Intuitively, our model captures LLM quality by supposing that if gi is of high quality and θi(x) is very large,
then it should be unlikely for the LLM output to be very different from the true output in terms of Euclidean distance
in embedding space. Conversely, if θi(x) is small, we assign larger probability to the setting where λi(x) and z⋆(x)
differ significantly. Finally, note that this graphical model corresponds to a multivariate Gaussian. That is, the vector
[λ1(x)− z⋆(x), . . . , λm(x)− z⋆(x)] ∈ Rdm is Gaussian with mean µ = 0⃗ and a diagonal covariance matrix Σ ∈ Rdm×dm

with Σjj = 1
2θ⌈j/m⌉(x)

. Intuitively, this means that the average difference vector between each λi and z⋆(x) is centered,
with its magnitude inversely proportional to the LLM score θi(x) and independent of other LLMs. Given this probabilistic
graphical model, our goal is to learn each quality score θi(x) from the unlabeled test dataset and use these for improved
routing.

4 Method
Given an unlabeled test dataset Dtest and a pool of LLMs G, SMOOTHIE consists of two steps:

1. Estimation: The LLM quality scores θ1(x), . . . , θm(x) are learned for each x ∈ Dtest (Section 4.1, Algorithm 1).
2. Routing: The LLM with the highest scores is selected, and its output is used as our final prediction for x (Section 4.2).
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Algorithm 1 ESTIMATE SCORES

1: Input: unlabeled test dataset Dtest, LLMs G, n0 nearest neighbors parameter, g0 embedding model with dimension d.
2: For all x ∈ Dtest and gi ∈ G, obtain the generator output g⃗i(x) and embed the input and generator output using model

g0 to get embedding λi(x) := zg0([x, gi(x)]).
3: for x ∈ Dtest, gi ∈ G do
4: for j, k ̸= i ∈ [m] do
5: Compute δ̂ij(x) =

1
n0

∑
x′∈NNn0

(x) ∥λi(x
′)− λj(x

′)∥2, and similarly δ̂ik(x) and δ̂jk(x).

6: Set θ̂jki (x) = d/(δ̂ij(x) + δ̂ik(x)− δ̂jk(x)).
7: Compute averaged estimate θ̂i(x) =

1

(m−1
2 )

∑
j,k ̸=i θ̂

jk
i (x).

8: return θ̂i(x) for all x ∈ Dtest, gi ∈ G.

We describe each step in the following sections.

4.1 LLM score estimation
We describe how to estimate each θi(x)s in the graphical model in (1) using only unlabeled data from Dtest. Then, we
describe how the LLM score estimate can be instantiated to be sample-conditional.

Computing θi(x) Below, we state a simple property arising from the fact that (1) corresponds to a multivariate Gaussian
with a diagonal covariance matrix.

Proposition 1. [85] For any i, j ∈ [m], it follows from the graphical model in (1) that

E
[
∥λi(x)− λj(x)∥2

]
= E

[
∥λi(x)− z⋆(x)∥2

]
+ E

[
∥λj(x)− z⋆(x)∥2

]
. (2)

The proof is in Appendix D and relies on the fact that off-diagonal entries of Σ are 0. Note that the left hand side of the
equation is observable while the two expectations on the right are unknown. We can apply this equation to pairs of LLM
embeddings over a triplet of λi, λj , λk to form a system of three equations with three unknown expectations. Solving, we
have

E
[
∥λi(x)− z⋆(x)∥2

]
=

1

2

(
δij(x) + δik(x)− δjk(x)

)
∀(i, j, k) ∈ [m], (3)

where δij(x) = E
[
∥λi(x)− λj(x)∥2

]
. Since (1) is a multivariate Gaussian with Σjj =

1
2θ⌈j/m⌉(x)

, we can write θi(x) as

the following function of E
[
∥λi(x)− z⋆(x)∥2

]
:

E
[
∥λi(x)− z⋆(x)∥2

]
=

d∑
j=1

E
[
(λi,j(x)− z⋆j (x))

2
]
=

d∑
j=1

Var
(
λi,j(x)− z⋆j (x)

)
=

d

2θi(x)
, (4)

where λi,j(x) and z⋆j (x) are the jth indices of the embeddings λi(x) and z⋆(x) respectively. Therefore, we can write
θjki (x) = d

δij(x)+δik(x)−δjk(x)
, where each δij(x) can be estimated using the LLM outputs on Dtest, and in practice in

Algorithm 1 we estimate θi(x) by averaging θjki (x) over all
(
m−1
2

)
pairs of j, k ̸= i.

Sample-conditional estimation of θi(x) Note that the expectation in δij(x) = E [∥λi(x)− λj(x)∥] is over the random-
ness in λi(x), λj(x) conditioned on a fixed point x. However, we only have one sample per x. One simple approach is to use
the entire dataset to estimate θi(x), i.e., δ̂ij(x) = 1

n

∑
x′∈Dtest

∥λi(x
′)− λj(x

′)∥2. We denote this as SMOOTHIE-GLOBAL.
However, in SMOOTHIE-GLOBAL each θi(x) for i ∈ [m] is a constant over the entire Dtest. Therefore, we use nearest
neighbor kernel smoothing to estimate each δij(x) in a sample-dependent manner, an approach we call SMOOTHIE-LOCAL.
Concretely, for x ∈ Dtest, define NNn0(x) ⊂ Dtest as the n0 < n nearest neighbors of x (excluding x itself) in f0’s
embedding space. Then, we construct δ̂ij(x) = 1

n0

∑
x′∈NNn0

(x) ∥λi(x
′) − λj(x

′)∥2, and do the same for δ̂ik(x), δ̂jk(x)
to get a sample-conditional estimate of θi(x). The procedure for estimating θi(x) in SMOOTHIE-LOCAL is outlined in
Algorithm 1.
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4.2 Routing

Once we have estimates of θ̂i(x) for each of the m generators by using Algorithm 1, we can construct our route() function.
We define route(G, x) = gi where i = argmax{θ1(x), . . . , θm(x)}, which selects the highest scoring LLM for input x
based on θ̂i(x). We apply this on Dtest to determine the best LLM for each input sample.

5 Results
We empirically analyze SMOOTHIE-GLOBAL and SMOOTHIE-LOCAL, focusing on four questions:

1. How well does SMOOTHIE-GLOBAL recover ground-truth LLM rankings over samples belonging to the same task
(Section 5.1)?

2. In multi-task datasets, how well can SMOOTHIE-LOCAL perform unsupervised-routing, by identifying the best LLM
for each sample (Section 5.2)?

3. Can SMOOTHIE-GLOBAL and SMOOTHIE-LOCAL be applied to select from or route between different prompts
(Section 5.3)?

4. How does SMOOTHIE-GLOBAL and SMOOTHIE-LOCAL’s performance change as a function of different algorithmic
choices (Section 5.4)?

5.1 Single-Task LLM Scoring
Setup We begin by evaluating whether SMOOTHIE-GLOBAL can accurately learn the relative performance of different
LLMs on a single task-dataset. We study three categories of tasks. First, we consider 7 datasets corresponding to commonly-
studied natural language generation (NLG) tasks [51]: CNN/DailyMail and XSum (summarization), SQuAD (reading
comprehension), TriviaQA (factual recall), E2E and WebNLG (data-to-text generation), and LegalBench’s Definition
Extraction (text extraction) [1, 27, 30, 31, 43, 61, 62, 70, 81, 84]. We report Rouge2 for summarization and data-to-text
generation tasks and accuracy for all others. For all tasks other than Definition Extraction we evaluate SMOOTHIE-GLOBAL
on a 1000 sample subset.1 For these tasks, we consider two ensembles of LLMs at different size points. At the 3B size point,
our ensemble consists of Pythia-2.8B [7], Gemma-2B [91], Incite-3B [17], and Dolly-3B [18]. At the 7B size point, our
ensemble consists of Llama-2 [92], Mistral [40], Vicuna [107], Gemma-7B [91], and Nous Capybara [19]. We manually
write a single prompt template for each task, and all model generations rely on this template.

Second, we consider two instruction-following benchmarks: AlpacaEval and MixInstruct [23, 24, 41, 50]. For AlpacaEval,
we rely on responses accessible via the online leaderboard.2 We identify 10 LLMs (each from a different base family),
and download these models’ responses to the AlpacaEval instructions. We conduct 10 different simulations, where in each
simulation we randomly select 5 LLMs from our pool to function as an ensemble. Reported win-rates use the standard
GPT-4 references. For MixInstruct, we use generations from an ensemble of 11 different LLMs originally studied in [41].
Following [41], we measure generation quality using a ChatGPT-based rank.

Finally, we consider a more “reasoning-intensive” task, GSM8K [16]. We consider an ensemble of three models: Gemma-7B,
Phi-2 [39], and Llema-7b [4]. We prompt each model to provide a chain-of-though reasoning [100], and apply SMOOTHIE
to these generations.

For all datasets, we apply SMOOTHIE-GLOBAL using SentenceBERT (all-mpnet-base-v2) embeddings of genera-
tions [76].

Results We first measure how frequently the highest-weighted LLM according to SMOOTHIE-GLOBAL corresponds to the
best-performing LLM in the ensemble. We observe that SMOOTHIE-GLOBAL selects the best-performing LLM for 4/7 tasks
on the 3B ensemble, and for 5/7 tasks on the 7B ensemble (Figure 8). On AlpacaEval, SMOOTHIE-GLOBAL selects the
best-performing LLM by win-rate for 8/10 ensembles, and the best performing LLM by length-controlled win-rate for 7/10
ensembles. On MixInstruct and GSM8K, SMOOTHIE-GLOBAL again identifies the best-performing LLM in the ensemble.

Second, we measure how well SMOOTHIE-GLOBAL captures quality differences between LLMs in the ensemble, by
computing the Spearman’s rank correlation coefficient between θi and ground truth quality scores ensemble models. Overall,
we find that SMOOTHIE-GLOBAL’s learned weights approximate the relative ordering of model quality well. On the NLG
tasks SMOOTHIE-GLOBAL we measure an average correlation coefficient (across both ensembles and seven tasks) of 0.72.
Figure 2(a) visually depicts the distribution of task coefficients—on only one ensemble/dataset pair is there a correlation

1Definition Extraction has fewer than 1000 samples.
2Responses are available on the AlpacaEval website: https://tatsu-lab.github.io/alpaca_eval/.
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CNN Def. Ext. E2E SQuAD TriviaQA WebNLG XSum

3B
RANDOM 12.9 52.4 27.3 59.6 32.7 23.4 4.5

SMOOTHIE-GLOBAL 14.3 61.5 31.8 60.7 32.1 30.7 4.5
BEST-ON-VAL 13.0 60.5 31.1 66.4 38.7 30.3 5.3

7B
RANDOM 13.7 58.5 35.3 67.9 59.3 44.1 6.9

SMOOTHIE-GLOBAL 14.5 70.9 36.9 76.2 68.3 45.9 8.4
BEST-ON-VAL 14.5 69.4 36.7 74.0 65.8 48.3 8.3

Table 1: Comparing SMOOTHIE-GLOBAL to baseline methods on different ensembles across NLG datasets. Underlined
values are the best performing unsupervised methods. Bold values are the best performing overall methods. We report
rouge2 scores for CNN, XSum, WebNLG, and E2E, and accuracy for the rest. All metrics are scaled to 0-100.

coefficient ≤ 0. On MixInstruct, we observe a correlation coefficient of 0.94, and on AlpacaEval, we observe a correlation
coefficient of 0.46.

Finally, we measure how the performance of the LLM selected by SMOOTHIE compares to other selection algorithms.
We first compare SMOOTHIE-GLOBAL to an unsupervised random baseline (RANDOM), which would select a random
model from the ensemble. We reported the expected performance of this method, which is equivalent to taking the average
performance of the ensemble. We also compare SMOOTHIE-GLOBAL to a labeled baseline which simulates selecting an
LLM on the basis of a small amount of validation data [67] (BEST-ON-VAL). We sample a small labeled validation set (50
samples) and select the LLM that performs the best on this set. To account for sampling variation, we repeat this with 10
random draws and report the average performance. Because AlpacaEval has no training split and MixInstruct has no labeled
data, we only compare SMOOTHIE-GLOBAL to RANDOM on those datasets.

Table 1 provides results for the seven NLG tasks. We find that SMOOTHIE-GLOBAL outperforms the unsupervised RANDOM
baseline on 6/7 tasks for the 3B ensemble and on 7/7 tasks for the 7B ensemble. SMOOTHIE-GLOBAL outperforms RANDOM
by up to 7pts (on tasks measured by rouge2), and by up to 12pts (on tasks measured by accuracy). We also observe that
SMOOTHIE-GLOBAL is frequently competitive with and even outperforms the BEST-ON-VAL baseline, which uses labeled
data. SMOOTHIE-GLOBAL outperforms BEST-ON-VAL on 4/7 tasks for the 3B ensemble, and 5/7 tasks for the 7B ensemble.
On GSM8K, SMOOTHIE-GLOBAL achieves a solve-rate of 37.5% (matching BEST-ON-VAL, while RANDOM achieves a
solve-rate of 28.3% (Table 11).

SMOOTHIE-GLOBAL also outperforms the RANDOM baseline on the instruction-following datasets. On MixInstruct,
SMOOTHIE-GLOBAL achieves a ChatGPT-rank (↓) of 3.91, while RANDOM achieves a ChatGPT-rank of 5.95 (Table 10).
On AlpacaEval, SMOOTHIE-GLOBAL outperforms RANDOM on all but one trial (across both win-rate and length-controlled
win-rate). SMOOTHIE-GLOBAL outperforms RANDOM by an average of 15pt win-rate, and up to 27pts. Figure 2(b) and
Figure 2(c) visualize this distribution.

(a) (b) (c)

Figure 2: (a) Spearman’s rank correlation coefficient between SMOOTHIE-GLOBAL weights and ground-truth LLM
performance for 3B and 7B ensembles across NLG tasks. (b) SMOOTHIE-GLOBAL’s improvement over RANDOM by win-
rate on AlpacaEval. (c)SMOOTHIE-GLOBAL’s improvement over RANDOM by length-controlled win-rate on AlpacaEval.
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3B 7B

Method DISTR-ACC DISTR-ROUGE2 DISTR-ACC DISTR-ROUGE2

RANDOM 48.7 17.0 65.4 25.0

PAIRRM 53.9 19.0 71.8 25.5

LABELED-KNN 51.0 16.8 71.7 26.2

BEST-MODEL 52.3 18.1 73.2 26.4

SMOOTHIE-GLOBAL 51.3 18.1 66.5 26.1

SMOOTHIE-LOCAL 58.7 20.2 75.0 26.9

Table 2: Comparing SMOOTHIE-LOCAL to baseline methods on the 3B and 7B ensembles for multi-task distributions.
DISTR-ACC and DISTR-ROUGE2 are measured with accuracy and rouge2 respectively. Bold values indicate the best
performing method for each dataset and model size. Metrics are scaled to 0-100.

5.2 Multi-task Routing
Setup We next assess whether SMOOTHIE-LOCAL’s sample-conditional scoring mechanism allows it to route samples to
LLMs in the multi-capability regime. We construct two mixed-task distributions by combining existing datasets. The first
distribution corresponds to tasks measured by accuracy, and contains SQuAD, TriviaQA, and Definition Extraction. We refer
to this as DISTR-ACC. The second distribution corresponds to tasks measured by Rouge2, and contains CNN/DailyMail,
XSum, Web NLG, and E2E. We refer to this as DISTR-ROUGE2. For each mixed-task dataset, we report the metric averaged
across all tasks. We compare to three baselines.

• RANDOM: A random-selection baseline which returns a generation from a random LLM in the ensemble. Though
naive, prior work has found this to be a strong method in practice [56]. We run 10 trials and report the mean of this
approach to account for variance.

• LABELED-KNN: A labeled data-based KNN baseline. For this, we sample 50 labeled samples from a separate hold-out
set (Dval), and measure the performance of each candidate LLM on this set. For a given test sample x, we identify
the 20 most semantically similar instances in Dval (using SentenceBERT embeddings [76]), and route x to the highest
performing LLM over this subset. We note that the LABELED-KNN baseline is derived from routing methods in
[48, 86].

• PAIRRM: A reward model from [41] which accepts an instruction and multiple generations as input, scores each
generations suitability for the instruction, and returns the predicted best generation. PAIRRM is a labeled-data method
which [41] trained on collected preference data.

In addition, we also compare the best individual model in the ensemble (BEST-MODEL), and SMOOTHIE-GLOBAL. For
both mixed-task datasets, we run SMOOTHIE-LOCAL with SentenceBERT embeddings, and the sample-conditional version
of SMOOTHIE-LOCAL estimates θi(x) using a neighborhood size n0 = 1.

Results for the 3B and 7B ensembles over DISTR-ACC and DISTR-ROUGE2 are provided in Table 2. We find that SMOOTHIE-
LOCAL outperforms all baselines across both data distributions, for both ensembles. Though SMOOTHIE-LOCAL requires
no labels, it still outperforms labeled data baselines like LABELED-KNN and PAIRRM. We observe a substantial gap
between SMOOTHIE-LOCAL and SMOOTHIE-GLOBAL, which indicates that SMOOTHIE-LOCAL’s sample-specific scoring
mechanism provides performance improvements.

Notably, we see that SMOOTHIE-LOCAL substantially betters BEST-MODEL, indicating that SMOOTHIE-LOCAL’s routing
mechanism is offering a performance improvement over a strategy which merely selects the best LLM on average. We
study this in greater detail by examining the relative rank of the LLM selected by SMOOTHIE-LOCAL for each sample. For
each sample in DISTR-ACC and DISTR-ROUGE2, we rank the quality of each LLM’s generation according to standard-
competition ranking (i.e., “1-2-2-4” ranking). We then count how frequently SMOOTHIE-LOCAL selects the rank-i
generation across each distribution for each ensemble. We visualize results in Figure 3. As the visualizations demonstrate,
SMOOTHIE-LOCAL consistently selects the best or second-best generation from within the ensemble.
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(a) (b)

(c) (d)

Figure 3: On DISTR-ACC and DISTR-ROUGE2, we measure how frequently SMOOTHIE-LOCAL selects the i-th best
generation across the ensemble, for both the 3B and 7B ensembles.

5.3 Prompt Selection
Third, we study whether SMOOTHIE-LOCAL and SMOOTHIE-GLOBAL can be generalized to other settings where engineers
have a candidate pool of text generators of unknown quality, and must select one of them to use for some application. In
particular, we focus on the setting where an engineer has access to multiple prompt templates for a given generation task, and
must select which prompt-templates’ generation to use as the final output [29]. Unlike above, we assume the engineer only
has access to one LLM. We study SMOOTHIE-LOCAL and SMOOTHIE-GLOBAL in this regime using the NLG tasks from
Section 5.1. For each task, we manually write between 3 and 5 prompt templates, varying the wording of instructions and
the choice of in-context samples. We analyze SMOOTHIE applied to two models at different size points: Falcon (1B) [65]
and Llama-2 (7B) [92].

Table 3 provides the results. Overall, we find that SMOOTHIE-GLOBAL selects the optimal prompt 2/7 times for Falcon-1B,
and 3/7 times for Llama-2. SMOOTHIE-LOCAL and SMOOTHIE-GLOBAL consistently outperform RANDOM–on 6/7
tasks for Falcon-1b and 6/7 tasks for Llama-2. On 7 task/model combinations, one of either SMOOTHIE-GLOBAL or
SMOOTHIE-LOCAL matches or outperforms a labeled baseline. To better contextualize performance improvements from
SMOOTHIE-GLOBAL, we also compare to the improvement that accompanies increasing model size. Following a common
practice in recent work, we can quantify the extent to which SMOOTHIE-GLOBAL allows smaller models to match or exceed
the performance of larger models [2, 29]. In Figure 4 (Appendix E), we compare RANDOM and SMOOTHIE-GLOBAL on
models from the Pythia suite at four sizes: 410M, 1B, 2.8B, and 6.9B parameters [7]. We observe that SMOOTHIE-GLOBAL
substantially improves performance—on E2E, SMOOTHIE-GLOBAL enables a 410M parameter model to outperform a 6.9B
parameter model.

5.4 Ablations
Finally, we conduct ablations to examine different aspects of SMOOTHIE-GLOBAL and SMOOTHIE-LOCAL: improving its
efficiency, adjusting the neighborhood size, varying the choice of embedding model, and using different LLM ensembles.

Improving efficiency First, we explain SMOOTHIE’s current efficiency properties. To estimate the Smoothie weights for
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CNN Def. Ext. E2E SQuAD TriviaQA WebNLG XSum

Falcon

RANDOM 7.1 60.3 27.8 47.3 22.0 29.2 4.7

SMOOTHIE-GLOBAL 7.9 62.2 31.6 53.3 31.4 28.3 6.4

SMOOTHIE-LOCAL 8.0 69.2 31.5 53.3 27.4 30.8 6.0

BEST-ON-VAL 8.4 64.2 31.0 52.7 31.4 32.5 6.7

Llama-2

RANDOM 7.3 47.8 31.6 54.0 45.9 45.5 11.2

SMOOTHIE-GLOBAL 6.9 64.6 37.6 61.4 68.7 48.5 12.8

SMOOTHIE-LOCAL 9.5 59.3 33.6 63.1 61.3 48.0 12.7

BEST-ON-VAL 11.8 64.6 35.0 66.1 68.7 48.7 13.0

Table 3: Comparing SMOOTHIE-GLOBAL and SMOOTHIE-LOCAL to baseline methods in the prompt-selection setting.
Underlined values are the best performing unsupervised methods. Bold values are the best performing overall methods. We
report rouge2 scores for CNN, XSum, WebNLG, and E2E, and accuracy for the rest. All metrics are scaled to 0-100.

routing, we use a simple closed-form procedure that does not require any SGD or training, as described in Algorithm 1. As a
result, SMOOTHIE weights on the entire dataset can be computed in seconds—for the 7B ensemble, SMOOTHIE-LOCAL on
the multi-task datasets takes 2.14 seconds per 1000 samples, and SMOOTHIE-GLOBAL on the single-task datasets takes
under 0.03 seconds per 1000 samples. Moreover, SMOOTHIE does not require any ground-truth annotations; however, all m
model generations per test sample are needed as input to the algorithm. That is, we need n×m generations for a Dtrain of
size n samples.

Fortunately, the need for computing all model generations per test sample can be removed with a small algorithm tweak,
making Smoothie even more efficient and its runtime independent of n. Suppose we have a held-out set of ntrain train
samples with precomputed generations from the models in the ensemble. For each test sample, we retrieve the most similar
train samples, learn the Smoothie weights for the sample using the corresponding train sample generations, and return the
model with the highest Smoothie weight (i.e., in line 5 in Algorithm 1, KNN is now over a held-out training dataset). This
approach, which we call SMOOTHIE-TRAIN, selects the model for a test sample without needing model generations for that
sample. Only ntrain ×m generations are needed, regardless of how large the test dataset n is.

We study the NLG tasks, using ntrain = 250 samples. In Table 7 (Appendix E), we evaluate a version of SMOOTHIE-
GLOBAL-TRAIN) and observe that it matches SMOOTHIE-GLOBAL on 12/14 model-dataset pairs, and performs worse on the
remaining 2/14 pairs. We also evaluate SMOOTHIE-LOCAL-TRAIN, on DISTR-ACC and DISTR-ROUGE2 (Table 8) using a
neighborhood of size n0 = 20. We find here that while SMOOTHIE-LOCAL-TRAIN underperforms SMOOTHIE-LOCAL
on both the 3B and 7B ensemble for both DISTR-ACC and DISTR-ROUGE2, it still outperforms RANDOM and remains
competitive with supervised baselines.

Neighborhood size We study the impact of n0, and consider SMOOTHIE-LOCAL’s performance for n0 ∈ [1, 5, 10, 20, 50, 100].
Figure 5 provides performance over DISTR-ACC and Figure 6 provides performance over DISTR-ROUGE2. Overall, we
find that SMOOTHIE-LOCAL’s performance steadily degrades as n0 increases, and is highest when n0 = 1.

Choice of embeddings We study how the choice of embeddings affects SMOOTHIE-GLOBAL performance (Table 9). Specif-
ically, we compare the performance of SMOOTHIE-LOCAL using Sentence-Bert embeddings (all-mpnet-base-v2) [76]
to BGE embeddings (bge-small-en-v1.5) [102]. We observe that SMOOTHIE-LOCAL appears robust to different
embeddings—SMOOTHIE-LOCAL with BGE embeddings still outperforms other labeled and unlabeled baselines. Inter-
estingly, we observe that certain embedding models appear to yield better performance over certain distribution/ensemble
combinations. For instance, SMOOTHIE-LOCAL with SentenceBERT embeddings outperforms SMOOTHIE-LOCAL with
BGE embeddings on DISTR-ACC for the 3B ensemble and DISTR-ROUGE2 for the 7B ensemble, while performing worse
on DISTR-ROUGE2 for the 3B ensemble and DISTR-ACC for the 7B ensemble.

Different ensembles Finally, we consider whether SMOOTHIE-GLOBAL can generalize to a wider array of ensembles
(Figure 7). We combine the LLMs contained in the 3B and 7B ensembles into a single pool, and sample 50 distinct
ensembles ranging in size from 4-7 LLMs. For each of the 7 NLG tasks, we evaluate SMOOTHIE-GLOBAL’s ability to
identify the best model from within each ensemble. Across these 350 settings, we find that SMOOTHIE-GLOBAL identifies
the best model in 211 of them (60.2% of the time), and one of the two best models in 292 of them (83% of the time).
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6 Conclusion
In this paper we study and propose an algorithm for learning label-free routers for generative tasks. We validate our approach
across a variety of evaluation regimes, finding it consistently beats other unsupervised approaches and often matches/exceeds
supervised approaches.

Limitations We discuss several of SMOOTHIE’s limitations. First, its multivariate Gaussian graphical model currently
uses a diagonal covariance matrix. This assumes independent error vectors for each generation, though SMOOTHIE could
be extended to account for dependencies [72, 93]. Additionally, SMOOTHIE optimizes only for performance without
considering cost tradeoffs between large and small models. Finally, its reliance on embeddings may capture only certain
aspects of semantic similarity. Other embedding models and additional heuristics could be used to create richer input
features for SMOOTHIE.
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A Appendix
In Appendix B, we provide a glossary of notation used in the paper. In Appendix C, we provide an extended related work,
and in Appendix D we provide a proof of Proposition 1, which is used in deriving the SMOOTHIE algorithm. Finally, in
Appendix E we provide additional experimental results and details.

Code for reproducing our results and using SMOOTHIE is available at https://github.com/HazyResearch/
smoothie.

B Notation
The glossary is given in Table 4 below.

Symbol Used for

V̄ The space of all vocabulary sequences.
x Input text x ∈ X ⊂ V̄ .
y Reference output text y ∈ Y ⊂ V̄ .
G Candidate pool of m LLMs, G = {g1, . . . , gm}, where each gi ∈ G : X → Y

produces a generation gi(x) on input x.
Dtest Unlabeled test dataset Dtest = {xi}ni=1.
route Routing function route : Gm ×X → G that selects the best LLM from G for each sample.
θi(x) Quality score of the ith LLM on test sample x, also used in the graphical model in (1).
zg0 Embedding mapping zg0 : V̄ → Rd for any text sequence, where g0 is an embedding model

such as SentenceBERT [76].
λi(x) The observable embedding of x concatenated with the ith LLM’s generated output,

λi(x) := zg0([x, gi(x)]).
z⋆(x) The latent embedding of x concatenated with unknown reference output, z⋆(x) := zg0([x, y]).
Z Partition function for normalization of (1).
n0 Number of nearest neighbors used to learn θi(x) for x. n0 = n (i.e., the entire test dataset)

corresponds to SMOOTHIE-GLOBAL and n0 < n corresponds to SMOOTHIE-LOCAL.
δ̂ij(x) The average squared Euclidean distance between the ith and jth LLM embeddings over

a neighborhood around x, δ̂ij(x) = 1
n0

∑
x′∈NNn0

(x) ∥λi(x
′)− λj(x

′)∥2.
This is the primary expression used in computing θi(x).

Table 4: Glossary of variables and symbols used in this paper.

C Extended Related Work
LLM Routing The problem of determining how to route samples to various models has been long studied in statistics [37, 42]
as well as Mixture of Experts deep neural networks [25, 82]. These works focus on how to jointly train the models and
router in a stable and efficient manner.

Since many LLMs are now available off-the-shelf, recent works study how routing mechanisms can be applied at inference
time to trained models. Some works involve training task or domain-specific expert models and then learning a router.
The router can be a nearest neighbors algorithm [38], a neural network [96] that classifies among the different domains
corresponding to the experts, or an extra gate learned when training the expert models [60]. These approaches do not
explicitly require labels, but they require knowledge of what domain is used to train each expert and assume that each expert
is the best model for its corresponding domain, therefore effectively using this mapping as a form of labels. In contrast, our
setting focuses on routing among pre-trained LLMs where we do not know what models are optimal on what tasks and their
samples.

A second category of inference-time routing works studies how to choose among a collection of pre-trained LLMs, which is
the setting that SMOOTHIE focuses on. Several approaches involve training a meta-model that either scores or ranks how
a LLM will perform on a sample [41, 74, 79], all of which required labeled data to train. MoRE [87] involves training a
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simpler random forest classifier, using the rate of agreement among LLMs as one of the features, which is similar to how
Smoothie estimates scores; however, it also requires labeled data to train the classifier. Some approaches [48, 86] do not
require training routers and simply use nearest neighbor methods. However, these nearest neighbor methods still use labeled
data to determine what training samples each LLM performs the best on. [55] invokes a trained reward model for the routing
mechanism. [21] trains a classification-based router using the BARTScore metric on LLM generations as pseudolabels;
this avoids using manually labeled data, demonstrating that while a majority of routing methods require labeled data, there
exist some alternatives that do not. We leave it to future work to compare and integrate SMOOTHIE with other unsupervised
approaches.

Finally, complementary to our setting are works that jointly focus on cost minimization as well as quality of generations.
RouterBench [33] creates a benchmark for studying the cost-quality tradeoffs in routing systems. Optimizing for cost can
be done algorithmically, such as in FrugalGPT [13], AutoMix [58], RouteLLM [63], and [88], as well as via hardware
enhancements such as SambaNova Systems’ Composition of Experts [69].

LLM Ensembling A rich literature has observed that ensembling LLM outputs—across different prompts or base models—
can improve the accuracy of generated predictions. Prior work has proposed and studied a number of different ensembling
algorithms for classification tasks, including majority-voting [54, 98], weak-supervision [2, 29], boosting [32, 68, 104], and
others [49, 66, 80].

More relevant to our work here is a literature on ensembling for generative tasks. One category of methods rely on an
auxilliary sequence-to-sequence models to “fuse” generations from different prompts or base LLMs [41]. Though recently
applied in the context of modern LLMs, the concept of fusion traces back to older work on summarization [5, 46, 47, 75].
Some techniques combine or switch among multiple outputs at inference time [34, 36, 59, 83, 97], while others involve
averaging in weight space [35, 38, 95]. Lastly, ensembling can also be approximated by randomly selecting a model to be
used in multi-turn settings [56].

Other LLM Selection Algorithms Beyond the setting of selecting among multiple LLMs, other works have explored
how to select the optimal prompt template from a collection of candidate prompts. These works can be grouped into two
categories. The first category assumes that engineers have access to labeled data. In the naive case, this labeled data can
simply be used to select the best performing prompt [45, 67, 77]. Another subset of this category focuses on the setting
where new prompts can be generated by selecting in-context demonstrations from a set of labeled samples (typically a small
training set) [22, 53]. Prior work has proposed different methods for identifying the optimal in-context demonstrations to
use, depending on the sample for which the LLM is being used to produce a prediction for [11, 77, 90, 101, 105, 106]. The
second category focuses on zero-label prompt selection methods, but solely for classification tasks [52, 89, 103]. Prior work
here selects prompts on the basis of mutual information [89], agreement rates between predictions produced by different
prompts [52], and various probability based measures [28, 57, 103].

Weak supervision SMOOTHIE utilizes techniques inspired by weak supervision literature. Weak supervision aims to
programmatically generate labels on an unlabeled dataset by aggregating the predictions of several weak “voters”, such
as heuristics, pre-trained models, and knowledge graphs [71, 73]. It assumes a particular latent variable graphical model
and uses its structure to estimate latent quantities, such as the accuracy of each voter (in our setting, the quality score of
each LLM). Typically, this graphical model is a binary Ising model, as weak supervision has generally been studied in
classification settings [26, 72], where embeddings have been utilized as auxiliary signal but not modeled explicitly [15, 29].
Weak supervision has been applied to broader settings, such as for learning rankings, graphs, and manifolds [85, 94]. We
derive our estimation procedure from the Gaussian model in [85], applying it to LLM embeddings. While both SMOOTHIE
and [85] use a multivariate Gaussian model, in SMOOTHIE we apply it to model routing with SBERT embeddings on natural
language datasets, whereas [85] conducts synthetic experiments in hyperbolic spaces and metric spaces induced by synthetic
graphs. Moreover, SMOOTHIE uses nearest neighbor kernel smoothing to allow for sample-dependent weights—critical for
routing—while [85] calculates one global set of weights over the dataset.

Consistency-based selection Consistency is central to unsupervised selection and aggregation methods, the simplest being
majority vote. While weak supervision methods [26] and SMOOTHIE heavily rely on notions of voter agreement as depicted
in a graphical model, there are several other consistency-based methods. Minimum Bayes Risk methods [6, 44] selects the
generation that has the highest average similarity (i.e., cosine) with other generations. This is similar to SMOOTHIE, which
routes to the lowest value of (3). If we ignore the subtraction of δjk(x) in (3) and average over more than just δij(x) and
δik(x), then SMOOTHIE with n0 = 1 is equivalent to [44] Therefore, SMOOTHIE can be considered as a slightly modified
and more general version of this approach. Another approach [10] relies on consistency between a “global” and “local”
embedding for each generation. They solve an optimization problem that estimates each generation’s quality score by
constructing a loss that enforces that the similarity between the estimated true generation (produced by a weighted average
of candidates) and the candidate generation should be the same according to both global and local embeddings. In contrast,
SMOOTHIE uses one embedding space, relies on a multivariate Gaussian structure among embeddings, and does not require
gradient descent to learn the quality of each generation.
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Test-Time Compute Approaches like model routing, ensembling, and selection can all be seen as ways of utilizing test-time
compute to produce higher-quality generations from a system of LLMs. Test-time compute can also be utilized over a single
LLM via techniques such as those used in OpenAI’s o1, Chain of Thought, and Rephrase and Respond [20, 64, 99]. Other
works have recently studied how test-time compute scales [9, 12]—finding that producing more generations can often yield
the correct response—and how to combine multiple test-time methods, such as Archon [78]. It is interesting future work to
consider how SMOOTHIE can be integrated with other test-time compute techniques.

D Proof of Proposition 1
We provide a proof of proposition 1, which is a direct property of multivariate Gaussians that is also presented in [85]. We
first expand E

[
∥λi(x)− λj(x)∥2

]
:

E
[
∥λi(x)− λj(x)∥2

]
= E

[
∥(λi(x)− z⋆(x))− (λj(x)− z⋆(x))∥2

]
(5)

= E
[
∥λi(x)− z⋆(x)∥2

]
+ E

[
∥λj(x)− z⋆(x)∥2

]
− 2E

[
(λi(x)− z⋆(x))⊤(λj(x)− z⋆(x))

]
Let λi,k(x) be the kth element of the λi(x) embedding, and similarly define z⋆k(x). Note that since Σ is diagonal, we can
write

Cov [λi,k(x)− z⋆k(x), λj,k(x)− z⋆k(x)]

= E [(λi,k(x)− z⋆k(x)) · (λj,k(x)− z⋆k(x))]− E [λi,k(x)− z⋆k(x)]E [λj,k(x)− z⋆k(x)]

= 0

for all k ∈ [d]. Since µ = 0⃗, we thus have that E [(λi,k(x)− z⋆k(x)) · (λj,k(x)− z⋆k(x))] = 0 for all k ∈ [d], which implies
that E

[
(λi(x)− z⋆(x))⊤(λj(x)− z⋆(x))

]
= 0. Plugging this into (5), we have

E
[
∥λi(x)− λj(x)∥2

]
= E

[
∥λi(x)− z⋆(x)∥2

]
+ E

[
∥λj(x)− z⋆(x)∥2

]
. (6)

E Additional Experiments and Details
This section contains additional details on experiments discussed in Section 5.

E.1 Datasets and Models
Table 5 provides links to the Huggingface datasets used for each task. For E2E, CNN/DailyMail, XSum, and Web NLG we
measure performance using rouge2. For SQuAD, TriviaQA, and Definition Extraction we measure using “accuracy.” A
model generation is treated as “correct” if if contains the answer, and incorrect otherwise [1].

Dataset name Huggingface URL
E2E https://huggingface.co/datasets/e2e_nlg
CNN/DailyMail https://huggingface.co/datasets/cnn_dailymail
SQuAD https://huggingface.co/datasets/hazyresearch/based-squad
XSum https://huggingface.co/datasets/EdinburghNLP/xsum
TriviaQA https://huggingface.co/datasets/mandarjoshi/trivia_qa
Web NLG https://huggingface.co/datasets/web_nlg
Definition Extraction https://huggingface.co/datasets/nguha/legalbench

Table 5: Datasets used.

Table 6 contains links for all models used.
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Model name Huggingface URL
Pythia-410M https://huggingface.co/EleutherAI/pythia-410m
Pythia-1B https://huggingface.co/EleutherAI/pythia-1b
Pythia-2.8B https://huggingface.co/EleutherAI/pythia-2.8b
Pythia-6.9B https://huggingface.co/EleutherAI/pythia-6.9b
Gemma-2B https://huggingface.co/google/gemma-2b-it
Incite-3B https://huggingface.co/togethercomputer/RedPajama-INCITE-Instruct-3B-v1
Dolly-3B https://huggingface.co/databricks/dolly-v2-3b
Llama-2-7B https://huggingface.co/meta-llama/Llama-2-7b-hf
Mistral-7B https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
Vicuna-7B https://huggingface.co/lmsys/vicuna-7b-v1.5
Gemma-7B https://huggingface.co/google/gemma-7b
Nous Capybara https://huggingface.co/NousResearch/Nous-Capybara-7B-V1.9
Phi-2 https://huggingface.co/microsoft/phi-2
Llema-7B https://huggingface.co/EleutherAI/llemma_7b

Table 6: Huggingface model URLs.

For the Alpaca leaderboard experiments, we run each trial by sampling 5 models from the following set of 10: Nanbeige-Plus-Chat-v0.1,
claude-2, Qwen1.5-110B-Chat, yi-large-preview, gemini-pro, Meta-Llama-3-70B-Instruct, Ein-70B-v0.1,
mistral-large-2402, Storm-7B, FsfairX-Zephyr-Chat-v0.1.

E.2 Additional Results

Figure 4: We compare RANDOM (blue) and SMOOTHIE-GLOBAL (orange) for prompt-selection on different sized models
in the Pythia suite. The x-axis denotes model size, and the y-axis denotes performance (either rouge2 or accuracy).
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CNN Def. Ext. E2E SQuAD TriviaQA WebNLG XSum

3B
RANDOM 12.9 52.4 27.3 59.6 32.7 23.4 4.5

SMOOTHIE-GLOBAL 14.3 61.5 31.8 60.7 32.1 30.7 4.5
SMOOTHIE-GLOBAL-TRAIN 14.3 61.5 24.7 60.7 32.1 30.7 4.5

BEST-ON-VAL 13.0 60.5 31.1 66.4 38.7 30.3 5.3

7B
RANDOM 13.7 58.5 35.3 67.9 59.3 44.1 6.9

SMOOTHIE-GLOBAL 14.5 70.9 36.9 76.2 68.3 45.9 8.4
SMOOTHIE-GLOBAL-TRAIN 14.5 70.9 36.5 76.2 68.3 45.9 8.4

BEST-ON-VAL 14.5 69.4 36.7 74.0 65.8 48.3 8.3

Table 7: We compare SMOOTHIE-GLOBAL to SMOOTHIE-GLOBAL-TRAIN, for which weights are learned on a hold-out set.
We provide results from baseline methods for reference. Underlined values are the best performing unsupervised methods.
Bold values are the best performing overall methods. We report rouge2 scores for CNN, XSum, WebNLG, and E2E, and
accuracy for the rest. All metrics are scaled to 0-100.

3B 7B

Method DISTR-ACC DISTR-ROUGE2 DISTR-ACC DISTR-ROUGE2

RANDOM 48.7 17.0 65.4 25.0

PAIRRM 53.9 19.0 71.8 25.5

LABELED-KNN 51.0 16.8 71.7 26.2

BEST-MODEL 52.3 18.1 73.2 26.4

SMOOTHIE-GLOBAL 51.3 18.1 66.5 26.1

SMOOTHIE-LOCAL 58.7 20.2 75.0 26.9

SMOOTHIE-GLOBAL-TRAIN 51.3 18.1 66.5 26.1

SMOOTHIE-LOCAL-TRAIN 50.7 18.8 70.9 26.0

Table 8: We compare SMOOTHIE-LOCAL to SMOOTHIE-LOCAL-train, for which weights are learned on a hold-out set, on
the 3B and 7B ensembles for multi-task distributions. DISTR-ACC and DISTR-ROUGE2 are measured with accuracy and
rouge2 respectively. Bold values indicate the best performing method for each dataset and model size. Metrics are scaled to
0-100. Other baseline methods are provided for comparison.
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3B 7B

Method DISTR-ACC DISTR-ROUGE2 DISTR-ACC DISTR-ROUGE2

RANDOM 48.7 17.0 65.4 25.0

PAIRRM 53.9 19.0 71.8 25.5

LABELED-KNN 51.0 16.8 71.7 26.2

BEST-MODEL 52.3 18.1 73.2 26.4

SMOOTHIE-LOCAL (BGE-small [102]) 59.3 19.7 74.6 27.1

SMOOTHIE-LOCAL (SBERT [76]) 58.7 20.2 75.0 26.9

Table 9: Comparing SMOOTHIE-LOCAL with different embeddings on the 3B and 7B ensembles for multi-task distributions.
DISTR-ACC and DISTR-ROUGE2 are measured with accuracy and rouge2 respectively. Bold values indicate the best
performing method for each dataset and model size. Metrics are scaled to 0-100.

Figure 5: We measure how SMOOTHIE-LOCAL’s performance on DISTR-ACC changes as n0 changes.
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Figure 6: We measure how SMOOTHIE-LOCAL’s performance on DISTR-ROUGE2 changes as n0 changes.

Figure 7: We evaluate SMOOTHIE-GLOBAL’s ability to identify the best model by randomly sampling 50 ensembles of size
4-7 LLMs from a pool of the LLMs contained in the 3B and 7B ensembles. We apply SMOOTHIE-GLOBAL to select the
best LLM from within each of these ensembles across the 7 NLG tasks, and measure the rank (relative to the ensemble) of
the LLM selected by SMOOTHIE-GLOBAL.
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Method ChatGPT-Rank (↓)

RANDOM 5.96

SMOOTHIE-GLOBAL 3.91

Table 10: Results for SMOOTHIE-GLOBAL and baselines on MixInstruct.

Method Accuracy

RANDOM 28.4

BEST-ON-VAL 37.5

SMOOTHIE-GLOBAL 37.5

Table 11: Results for SMOOTHIE-GLOBAL and baselines on GSM8K. We report accuracy, with scores scaled to 0-100.

Figure 8: We construct a histogram over the rank of the LLM selected by SMOOTHIE-GLOBAL across both the 3B and 7B
ensembles, for 7 NLG tasks.
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