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Abstract

Large language models (LLMs) are increasingly used in applications where LLM
inputs may span many different tasks. Recent work has found that the choice of
LLM is consequential, and different LLMs may be good for different input samples.
Prior approaches have thus explored how engineers might select an LLM to use for
each sample (i.e. routing). While existing routing methods mostly require training
auxiliary models on human-annotated data, our work explores whether it is possible
to perform unsupervised routing. We propose SMOOTHIE, a weak supervision-
inspired routing approach that requires no labeled data. Given a set of outputs
from different LLMs, SMOOTHIE constructs a latent variable graphical model
over embedding representations of observable LLM outputs and unknown “true”
outputs. Using this graphical model, we estimate sample-dependent quality scores
for each LLM, and route each sample to the LLM with the highest corresponding
score. We find that SMOOTHIE’s LLM quality-scores correlate with ground-truth
model quality (correctly identifying the optimal model on 9/14 tasks), and that
SMOOTHIE outperforms baselines for routing by up to 10 points accuracy.

1 Introduction

Large language models (LLMs) are increasingly being deployed in multi-capability regimes where
data inputs may span a diverse range of tasks, each of which requires different capabilities [8]. For
instance, an LLM-powered chatbot may be asked to write code, answer questions about different
domains, summarize documents, perform extraction, and more [3, 8, 14, 30]. One challenge is that
while engineers often have access to numerous pre-trained LLMs (i.e., through Huggingface or
various APIs), they do not know which LLM is optimal for each possible user input [86]. Because
the quality of generations can significantly vary across LLMs, choosing the right LLM for each input
sample is important for ensuring high task performance [41].

Recent work has explored various ways to utilize ensembles of pretrained LLMs in multi-capability
settings, by (1) collecting a diverse pool of LLMs and (2) identifying which LLM to route each
sample to [55, 86]. However, the majority of existing approaches require labeled data; engineers
typically either (1) train an auxiliary model using labeled data to rank or predict which LLM each
sample should be routed to [41, 79], or (2) directly use labeled data to determine which LLM is the
best on average [86]. As a result, engineers designing routing protocols face the practical difficulty of
constructing labeled datasets.

Given a candidate pool of LLMs and an unlabeled test dataset, this paper explores how to best
select LLM outputs for each sample in an entirely unsupervised manner—without labeled data, or
models trained on labeled data. To make progress in addressing this question, we face two technical
challenges:

• Unknown LLM quality: The first challenge is estimating the quality of each LLM. Access
to labeled data allows engineers to identify higher performing LLMs by measuring the accu-
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Figure 1: For a given input x, SMOOTHIE estimates the quality of every LLM ensemble’s generation, and uses
this quality weight to route x to a single LLM.

racy/quality of LLM outputs. In this paper, we study the question of how to estimate quality
without labeled validation data.

• Sample-conditional generator performance: The second challenge is determining how to select
the best LLM for each individual test sample. LLM outputs can vary in quality over different
samples, which could render population-level estimates of LLM quality misleading.

In this work, we propose SMOOTHIE, a method for routing samples to LLMs in a label-free manner
(Figure 1). Below, we describe how SMOOTHIE addresses the two challenges described above.

• Quality estimation: Using the LLM outputs for each test sample as “voters,” SMOOTHIE
estimates the quality of each generator using methods from Weak Supervision (WS). Concretely,
SMOOTHIE constructs a latent variable graphical model over observable LLM outputs and an
unknown true output. By modeling the embedding vector difference between each LLM output
and the true output as a multivariate Gaussian, we can derive a closed-form estimator adapted
from [85] for learning LLM quality scores efficiently.

• Conditioning: We condition these quality estimates to be particular to a given test sample by
only using the nearest neighbors of a test sample in the training data as inputs to the estimator
(i.e., kernel smoothing). We then route each test sample to the LLM with the highest quality score
estimate on that sample. We call the version of SMOOTHIE that produces quality estimates using
all available test data SMOOTHIE-GLOBAL, and we call the version that uses a sample’s nearest
neighbors SMOOTHIE-LOCAL.

We empirically evaluate SMOOTHIE in three stages.

• LLM selection: First, we assess SMOOTHIE-GLOBAL’s ability to identify—from an ensemble
of mixed quality LLMs—the optimal LLM for a given task overall. On traditional generation
tasks such as summarization, reading comprehension, and data-to-text generation, we find that
SMOOTHIE-GLOBAL’s learned LLM quality-weights correlate with actual LLM performance (ρ =
0.72)), and on the AlpacaEval benchmark, SMOOTHIE-GLOBAL identifies the best-performing
instruction model 70% of the time [50]. The highest quality LLM identified by SMOOTHIE-
GLOBAL—all computed without labeled data—can beat random-selection by up to 15 points
win-rate on AlpacaEval, and by up to 8 points on SQuAD.

• Routing: Second, we study whether SMOOTHIE-LOCAL’s sample-conditional scoring mechanism
allows it to route samples in mixed-task datasets to higher-performing LLMs (i.e., the multi-
capability regime). We find that SMOOTHIE-LOCAL can improve the quality of produced
generations by up to 7 points accuracy over SMOOTHIE-GLOBAL, and that SMOOTHIE-LOCAL
outperforms baseline unsupervised routing methods by up to 10 points accuracy and supervised
routing methods by up to 5.0 points accuracy.

• Prompt selection: Finally, we assess whether SMOOTHIE’s quality-estimation mechanism can be
applied to select the optimal prompt template in a candidate pool while using a fixed LLM. We
find that SMOOTHIE-GLOBAL can outperform other prompt selection approaches by up to 18
points, allowing a 410M parameter model to match the performance of 6.9B parameter model.
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2 Related Work

We provide an abbreviated related work, with a full treatment in Appendix C.

Routing Routing has been classically utilized in Mixture-of-Experts models [25, 37, 42, 82], which
involve jointly training a set of models as well as a router. Recently, routing mechanisms have
been used at inference time to decide which pre-trained LLM to use for a given sample [79]. Some
approaches involve training an auxiliary model using labeled training data to either score or rank the
performance of each LLM on each test sample [38, 74]. Others do not involve training a model but
instead use nearest neighbor methods, selecting the LLM that does the best on a test sample’s labeled
neighbors [48, 86]. In contrast, SMOOTHIE does not require any labels.

Ensembling Ensembling is another way of utilizing a pool of LLMs. Existing work has primarily
focused on ensembling outputs for classification tasks [2, 68, 98]. Ensembling generative outputs
typically requires training an auxiliary model [41], combining or switching among outputs when
decoding [36, 83], or averaging in weight space [95].

Prompt selection In addition to selecting the best LLM for a sample, prior works have studied how to
select the best prompt or in-context examples. While the simplest approach is to use a held-out labeled
dataset [67], there are also retrieval-based approaches to selecting the best in-context examples [90],
as well as approaches based on mutual information [89] and probability-based measures [103],
although the latter two are limited to classification.

Weak supervision SMOOTHIE utilizes statistical techniques inspired by weak supervision, which
programmatically generate labels for an unlabeled dataset by aggregating the predictions of several
weak “voters” via a latent variable graphical model [71, 73]. Weak supervision has mostly been
studied in classification settings [26, 72] but more recently has been extended to tasks such as learning
rankings and manifolds [85, 94]. We derive our estimation procedure from the Gaussian model in [85],
applying it to LLM embeddings and the routing setting.

3 Preliminaries

3.1 Problem setup

Let V be the token vocabulary space, and let V̄ = V×· · ·×V be the space of all vocabulary sequences.
We consider a generative task with input text x ∈ X ⊂ V̄ and reference output text y ∈ Y ⊂ V̄ . We
have a candidate pool of m LLMs, G = {g1, . . . , gm}, where each gi ∈ G : X → Y produces a
generative output sequence gi(x) for a given input text sequence x. We are given an unlabeled test
dataset Dtest = {xi}ni=1, where the ground-truth reference outputs are unknown.

Our goal is to route each sample x ∈ Dtest to one of the LLMs in G. Specifically, we wish to construct
a router route : Gm ×X → G that selects the LLM that yields the highest quality generation on x
for each test sample x, without any labeled data.

3.2 Graphical model

We present a probabilistic graphical model (see Figure 1 (center)) that describes how the LLM outputs,
g1(x), . . . , gm(x), are related to a true output y in terms of each LLM’s quality on a given input x,
which we call θi(x), corresponding to each gi(x). Let zg0 : V̄ → Rd map from a sequence of tokens to
a d-dimensional embedding using a common model g0 such as SentenceBERT [76]. Define λi(x) :=
zg0([x, gi(x)]) to be the observable embedding of x and the LLM output, and define z⋆(x) :=
zg0([x, y]) to be the latent ground-truth embedding of x and reference output y. Similar to the
approach in [85], we model the distribution over embedding vectors, Pr(z⋆(x), λ1(x), . . . , λm(x)|x)
as

Pr(z⋆(x), λ1(x), . . . , λm(x)|x) = 1

Z
exp

( m∑
i=1

−θi(x)∥λi(x)− z⋆(x)∥2
)

(1)

where Z is the log partition function and the θi(x)s—the LLM quality scores—are canonical param-
eters of the graphical model. Intuitively, our model captures LLM quality by supposing that if gi
is of high quality and θi(x) is very large, then it should be unlikely for the LLM output to be very
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Algorithm 1 ESTIMATE SCORES

1: Input: unlabeled test dataset Dtest, LLMs G, n0 nearest neighbors parameter, g0 embedding
model with dimension d.

2: For all x ∈ Dtest and gi ∈ G, obtain the generator output g⃗i(x) and embed the input and generator
output using model g0 to get embedding λi(x) := zg0([x, gi(x)]).

3: for x ∈ Dtest, gi ∈ G do
4: for j, k ̸= i ∈ [m] do
5: Compute δ̂ij(x) = 1

n0

∑
x′∈NNn0

(x) ∥λi(x
′)−λj(x

′)∥2, and similarly δ̂ik(x) and δ̂jk(x).

6: Set θ̂jki (x) = d/(δ̂ij(x) + δ̂ik(x)− δ̂jk(x)).
7: Compute averaged estimate θ̂i(x) =

1

(m−1
2 )

∑
j,k ̸=i θ̂

jk
i (x).

8: return θ̂i(x) for all x ∈ Dtest, gi ∈ G.

different from the true output in terms of Euclidean distance in embedding space. Conversely, if
θi(x) is small, we assign larger probability to the setting where λi(x) and z⋆(x) differ significantly.
Finally, note that this graphical model corresponds to a multivariate Gaussian. That is, the vector
[λ1(x)− z⋆(x), . . . , λm(x)− z⋆(x)] ∈ Rdm is Gaussian with mean µ = 0⃗ and a diagonal covariance
matrix Σ ∈ Rdm×dm with Σjj = 1

2θ⌈j/m⌉(x)
. Intuitively, this means that the average difference

vector between each λi and z⋆(x) is centered, with its magnitude inversely proportional to the LLM
score θi(x) and independent of other LLMs. Given this probabilistic graphical model, our goal is to
learn each quality score θi(x) from the unlabeled test dataset and use these for improved routing.

4 Method

Given an unlabeled test dataset Dtest and a pool of LLMs G, SMOOTHIE consists of two steps:

1. Estimation: The LLM quality scores θ1(x), . . . , θm(x) are learned for each x ∈ Dtest (Section 4.1,
Algorithm 1).

2. Routing: The LLM with the highest scores is selected, and its output is used as our final prediction
for x (Section 4.2).

We describe each step in the following sections.

4.1 LLM score estimation

We describe how to estimate each θi(x)s in the graphical model in (1) using only unlabeled data from
Dtest. Then, we describe how the LLM score estimate can be instantiated to be sample-conditional.

Computing θi(x) Below, we state a simple property arising from the fact that (1) corresponds to a
multivariate Gaussian with a diagonal covariance matrix.

Proposition 1 [85] For any i, j ∈ [m], it follows from the graphical model in (1) that

E
[
∥λi(x)− λj(x)∥2

]
= E

[
∥λi(x)− z⋆(x)∥2

]
+ E

[
∥λj(x)− z⋆(x)∥2

]
. (2)

The proof is in Appendix D and relies on the fact that off-diagonal entries of Σ are 0. Note that the
left hand side of the equation is observable while the two expectations on the right are unknown. We
can apply this equation to pairs of LLM embeddings over a triplet of λi, λj , λk to form a system of
three equations with three unknown expectations. Solving, we have

E
[
∥λi(x)− z⋆(x)∥2

]
=

1

2

(
δij(x) + δik(x)− δjk(x)

)
∀(i, j, k) ∈ [m], (3)
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where δij(x) = E
[
∥λi(x)− λj(x)∥2

]
. Since (1) is a multivariate Gaussian with Σjj =

1
2θ⌈j/m⌉(x)

,

we can write θi(x) as the following function of E
[
∥λi(x)− z⋆(x)∥2

]
:

E
[
∥λi(x)− z⋆(x)∥2

]
=

d∑
j=1

E
[
(λi,j(x)− z⋆j (x))

2
]
=

d∑
j=1

Var
(
λi,j(x)− z⋆j (x)

)
=

d

2θi(x)
,

(4)

where λi,j(x) and z⋆j (x) are the jth indices of the embeddings λi(x) and z⋆(x) respectively. There-
fore, we can write θjki (x) = d

δij(x)+δik(x)−δjk(x)
, where each δij(x) can be estimated using the LLM

outputs on Dtest, and in practice in Algorithm 1 we estimate θi(x) by averaging θjki (x) over all
(
m−1
2

)
pairs of j, k ̸= i.

Sample-conditional estimation of θi(x) Note that the expectation in δij(x) =
E [∥λi(x)− λj(x)∥] is over the randomness in λi(x), λj(x) conditioned on a fixed point x.
However, we only have one sample per x. One simple approach is to use the entire dataset to estimate
θi(x), i.e., δ̂ij(x) = 1

n

∑
x′∈Dtest

∥λi(x
′) − λj(x

′)∥2. We denote this as SMOOTHIE-GLOBAL.
However, in SMOOTHIE-GLOBAL each θi(x) for i ∈ [m] is a constant over the entire Dtest.
Therefore, we use nearest neighbor kernel smoothing to estimate each δij(x) in a sample-dependent
manner, an approach we call SMOOTHIE-LOCAL. Concretely, for x ∈ Dtest, define NNn0

(x) ⊂ Dtest
as the n0 < n nearest neighbors of x (excluding x itself) in f0’s embedding space. Then, we
construct δ̂ij(x) = 1

n0

∑
x′∈NNn0 (x)

∥λi(x
′)− λj(x

′)∥2, and do the same for δ̂ik(x), δ̂jk(x) to get a
sample-conditional estimate of θi(x). The procedure for estimating θi(x) in SMOOTHIE-LOCAL is
outlined in Algorithm 1.

4.2 Routing

Once we have estimates of θ̂i(x) for each of the m generators by using Algorithm 1, we can construct
our route() function. We define route(G, x) = gi where i = argmax{θ1(x), . . . , θm(x)}, which
selects the highest scoring LLM for input x based on θ̂i(x). We apply this on Dtest to determine the
best LLM for each input sample.

5 Results

We empirically analyze SMOOTHIE-GLOBAL and SMOOTHIE-LOCAL, focusing on four questions:

1. How well does SMOOTHIE-GLOBAL recover ground-truth LLM rankings over samples belonging
to the same task (Section 5.1)?

2. In multi-task datasets, how well can SMOOTHIE-LOCAL perform unsupervised-routing, by
identifying the best LLM for each sample (Section 5.2)?

3. Can SMOOTHIE-GLOBAL and SMOOTHIE-LOCAL be applied to select from or route between
different prompts (Section 5.3)?

4. How does SMOOTHIE-GLOBAL and SMOOTHIE-LOCAL’s performance change as a function of
different algorithmic choices (Section 5.4)?

5.1 Single-Task LLM Scoring

Setup We begin by evaluating whether SMOOTHIE-GLOBAL can accurately learn the relative
performance of different LLMs on a single task-dataset. We study three categories of tasks. First, we
consider 7 datasets corresponding to commonly-studied natural language generation (NLG) tasks [51]:
CNN/DailyMail and XSum (summarization), SQuAD (reading comprehension), TriviaQA (factual
recall), E2E and WebNLG (data-to-text generation), and LegalBench’s Definition Extraction (text
extraction) [1, 27, 30, 31, 43, 61, 62, 70, 81, 84]. We report Rouge2 for summarization and data-to-
text generation tasks and accuracy for all others. For all tasks other than Definition Extraction we
evaluate SMOOTHIE-GLOBAL on a 1000 sample subset.2 For these tasks, we consider two ensembles

2Definition Extraction has fewer than 1000 samples.
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of LLMs at different size points. At the 3B size point, our ensemble consists of Pythia-2.8B [7],
Gemma-2B [91], Incite-3B [17], and Dolly-3B [18]. At the 7B size point, our ensemble consists of
Llama-2 [92], Mistral [40], Vicuna [107], Gemma-7B [91], and Nous Capybara [19]. We manually
write a single prompt template for each task, and all model generations rely on this template.

Second, we consider two instruction-following benchmarks: AlpacaEval and MixInstruct [23, 24, 41,
50]. For AlpacaEval, we rely on responses accessible via the online leaderboard.3 We identify 10
LLMs (each from a different base family), and download these models’ responses to the AlpacaEval
instructions. We conduct 10 different simulations, where in each simulation we randomly select
5 LLMs from our pool to function as an ensemble. Reported win-rates use the standard GPT-4
references. For MixInstruct, we use generations from an ensemble of 11 different LLMs originally
studied in [41]. Following [41], we measure generation quality using a ChatGPT-based rank.

Finally, we consider a more “reasoning-intensive” task, GSM8K [16]. We consider an ensemble
of three models: Gemma-7B, Phi-2 [39], and Llema-7b [4]. We prompt each model to provide a
chain-of-though reasoning [100], and apply SMOOTHIE to these generations.

For all datasets, we apply SMOOTHIE-GLOBAL using SentenceBERT (all-mpnet-base-v2) em-
beddings of generations [76].

Results We first measure how frequently the highest-weighted LLM according to SMOOTHIE-
GLOBAL corresponds to the best-performing LLM in the ensemble. We observe that SMOOTHIE-
GLOBAL selects the best-performing LLM for 4/7 tasks on the 3B ensemble, and for 5/7 tasks on the
7B ensemble (Figure 8). On AlpacaEval, SMOOTHIE-GLOBAL selects the best-performing LLM by
win-rate for 8/10 ensembles, and the best performing LLM by length-controlled win-rate for 7/10
ensembles. On MixInstruct and GSM8K, SMOOTHIE-GLOBAL again identifies the best-performing
LLM in the ensemble.

Second, we measure how well SMOOTHIE-GLOBAL captures quality differences between LLMs
in the ensemble, by computing the Spearman’s rank correlation coefficient between θi and ground
truth quality scores ensemble models. Overall, we find that SMOOTHIE-GLOBAL’s learned weights
approximate the relative ordering of model quality well. On the NLG tasks SMOOTHIE-GLOBAL we
measure an average correlation coefficient (across both ensembles and seven tasks) of 0.72. Figure
2(a) visually depicts the distribution of task coefficients—on only one ensemble/dataset pair is there
a correlation coefficient ≤ 0. On MixInstruct, we observe a correlation coefficient of 0.94, and on
AlpacaEval, we observe a correlation coefficient of 0.46.

Finally, we measure how the performance of the LLM selected by SMOOTHIE compares to other
selection algorithms. We first compare SMOOTHIE-GLOBAL to an unsupervised random baseline
(RANDOM), which would select a random model from the ensemble. We reported the expected
performance of this method, which is equivalent to taking the average performance of the ensemble.
We also compare SMOOTHIE-GLOBAL to a labeled baseline which simulates selecting an LLM on
the basis of a small amount of validation data [67] (BEST-ON-VAL). We sample a small labeled
validation set (50 samples) and select the LLM that performs the best on this set. To account
for sampling variation, we repeat this with 10 random draws and report the average performance.
Because AlpacaEval has no training split and MixInstruct has no labeled data, we only compare
SMOOTHIE-GLOBAL to RANDOM on those datasets.

Table 1 provides results for the seven NLG tasks. We find that SMOOTHIE-GLOBAL outperforms
the unsupervised RANDOM baseline on 6/7 tasks for the 3B ensemble and on 7/7 tasks for the 7B
ensemble. SMOOTHIE-GLOBAL outperforms RANDOM by up to 7pts (on tasks measured by rouge2),
and by up to 12pts (on tasks measured by accuracy). We also observe that SMOOTHIE-GLOBAL is
frequently competitive with and even outperforms the BEST-ON-VAL baseline, which uses labeled
data. SMOOTHIE-GLOBAL outperforms BEST-ON-VAL on 4/7 tasks for the 3B ensemble, and
5/7 tasks for the 7B ensemble. On GSM8K, SMOOTHIE-GLOBAL achieves a solve-rate of 37.5%
(matching BEST-ON-VAL, while RANDOM achieves a solve-rate of 28.3% (Table 11).

SMOOTHIE-GLOBAL also outperforms the RANDOM baseline on the instruction-following datasets.
On MixInstruct, SMOOTHIE-GLOBAL achieves a ChatGPT-rank (↓) of 3.91, while RANDOM achieves
a ChatGPT-rank of 5.95 (Table 10). On AlpacaEval, SMOOTHIE-GLOBAL outperforms RANDOM
on all but one trial (across both win-rate and length-controlled win-rate). SMOOTHIE-GLOBAL

3Responses are available on the AlpacaEval website: https://tatsu-lab.github.io/alpaca_eval/.
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CNN Def. Ext. E2E SQuAD TriviaQA WebNLG XSum

3B
RANDOM 12.9 52.4 27.3 59.6 32.7 23.4 4.5

SMOOTHIE-GLOBAL 14.3 61.5 31.8 60.7 32.1 30.7 4.5
BEST-ON-VAL 13.0 60.5 31.1 66.4 38.7 30.3 5.3

7B
RANDOM 13.7 58.5 35.3 67.9 59.3 44.1 6.9

SMOOTHIE-GLOBAL 14.5 70.9 36.9 76.2 68.3 45.9 8.4
BEST-ON-VAL 14.5 69.4 36.7 74.0 65.8 48.3 8.3

Table 1: Comparing SMOOTHIE-GLOBAL to baseline methods on different ensembles across NLG datasets.
Underlined values are the best performing unsupervised methods. Bold values are the best performing overall
methods. We report rouge2 scores for CNN, XSum, WebNLG, and E2E, and accuracy for the rest. All metrics
are scaled to 0-100.

outperforms RANDOM by an average of 15pt win-rate, and up to 27pts. Figure 2(b) and Figure 2(c)
visualize this distribution.

(a) (b) (c)

Figure 2: (a) Spearman’s rank correlation coefficient between SMOOTHIE-GLOBAL weights and ground-truth
LLM performance for 3B and 7B ensembles across NLG tasks. (b) SMOOTHIE-GLOBAL’s improvement
over RANDOM by win-rate on AlpacaEval. (c)SMOOTHIE-GLOBAL’s improvement over RANDOM by length-
controlled win-rate on AlpacaEval.

5.2 Multi-task Routing

Setup We next assess whether SMOOTHIE-LOCAL’s sample-conditional scoring mechanism allows
it to route samples to LLMs in the multi-capability regime. We construct two mixed-task distributions
by combining existing datasets. The first distribution corresponds to tasks measured by accuracy,
and contains SQuAD, TriviaQA, and Definition Extraction. We refer to this as DISTR-ACC. The
second distribution corresponds to tasks measured by Rouge2, and contains CNN/DailyMail, XSum,
Web NLG, and E2E. We refer to this as DISTR-ROUGE2. For each mixed-task dataset, we report the
metric averaged across all tasks. We compare to three baselines.

• RANDOM: A random-selection baseline which returns a generation from a random LLM in the
ensemble. Though naive, prior work has found this to be a strong method in practice [56]. We run
10 trials and report the mean of this approach to account for variance.

• LABELED-KNN: A labeled data-based KNN baseline. For this, we sample 50 labeled samples
from a separate hold-out set (Dval), and measure the performance of each candidate LLM on this
set. For a given test sample x, we identify the 20 most semantically similar instances in Dval
(using SentenceBERT embeddings [76]), and route x to the highest performing LLM over this
subset. We note that the LABELED-KNN baseline is derived from routing methods in [48, 86].

• PAIRRM: A reward model from [41] which accepts an instruction and multiple generations
as input, scores each generations suitability for the instruction, and returns the predicted best
generation. PAIRRM is a labeled-data method which [41] trained on collected preference data.

In addition, we also compare the best individual model in the ensemble (BEST-MODEL), and
SMOOTHIE-GLOBAL. For both mixed-task datasets, we run SMOOTHIE-LOCAL with SentenceBERT
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3B 7B

Method DISTR-ACC DISTR-ROUGE2 DISTR-ACC DISTR-ROUGE2

RANDOM 48.7 17.0 65.4 25.0

PAIRRM 53.9 19.0 71.8 25.5

LABELED-KNN 51.0 16.8 71.7 26.2

BEST-MODEL 52.3 18.1 73.2 26.4

SMOOTHIE-GLOBAL 51.3 18.1 66.5 26.1

SMOOTHIE-LOCAL 58.7 20.2 75.0 26.9

Table 2: Comparing SMOOTHIE-LOCAL to baseline methods on the 3B and 7B ensembles for multi-task
distributions. DISTR-ACC and DISTR-ROUGE2 are measured with accuracy and rouge2 respectively. Bold
values indicate the best performing method for each dataset and model size. Metrics are scaled to 0-100.

embeddings, and the sample-conditional version of SMOOTHIE-LOCAL estimates θi(x) using a
neighborhood size n0 = 1.

Results for the 3B and 7B ensembles over DISTR-ACC and DISTR-ROUGE2 are provided in Table 2.
We find that SMOOTHIE-LOCAL outperforms all baselines across both data distributions, for both
ensembles. Though SMOOTHIE-LOCAL requires no labels, it still outperforms labeled data baselines
like LABELED-KNN and PAIRRM. We observe a substantial gap between SMOOTHIE-LOCAL and
SMOOTHIE-GLOBAL, which indicates that SMOOTHIE-LOCAL’s sample-specific scoring mechanism
provides performance improvements.

(a) (b)

(c) (d)

Figure 3: On DISTR-ACC and DISTR-ROUGE2, we measure how frequently SMOOTHIE-LOCAL selects the
i-th best generation across the ensemble, for both the 3B and 7B ensembles.

Notably, we see that SMOOTHIE-LOCAL substantially betters BEST-MODEL, indicating that
SMOOTHIE-LOCAL’s routing mechanism is offering a performance improvement over a strategy
which merely selects the best LLM on average. We study this in greater detail by examining the
relative rank of the LLM selected by SMOOTHIE-LOCAL for each sample. For each sample in
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CNN Def. Ext. E2E SQuAD TriviaQA WebNLG XSum

Falcon
RANDOM 7.1 60.3 27.8 47.3 22.0 29.2 4.7

SMOOTHIE-GLOBAL 7.9 62.2 31.6 53.3 31.4 28.3 6.4
SMOOTHIE-LOCAL 8.0 69.2 31.5 53.3 27.4 30.8 6.0

BEST-ON-VAL 8.4 64.2 31.0 52.7 31.4 32.5 6.7

Llama-2
RANDOM 7.3 47.8 31.6 54.0 45.9 45.5 11.2

SMOOTHIE-GLOBAL 6.9 64.6 37.6 61.4 68.7 48.5 12.8
SMOOTHIE-LOCAL 9.5 59.3 33.6 63.1 61.3 48.0 12.7

BEST-ON-VAL 11.8 64.6 35.0 66.1 68.7 48.7 13.0

Table 3: Comparing SMOOTHIE-GLOBAL and SMOOTHIE-LOCAL to baseline methods in the prompt-selection
setting. Underlined values are the best performing unsupervised methods. Bold values are the best performing
overall methods. We report rouge2 scores for CNN, XSum, WebNLG, and E2E, and accuracy for the rest. All
metrics are scaled to 0-100.

DISTR-ACC and DISTR-ROUGE2, we rank the quality of each LLM’s generation according to
standard-competition ranking (i.e., “1-2-2-4” ranking). We then count how frequently SMOOTHIE-
LOCAL selects the rank-i generation across each distribution for each ensemble. We visualize results
in Figure 3. As the visualizations demonstrate, SMOOTHIE-LOCAL consistently selects the best or
second-best generation from within the ensemble.

5.3 Prompt Selection

Third, we study whether SMOOTHIE-LOCAL and SMOOTHIE-GLOBAL can be generalized to other
settings where engineers have a candidate pool of text generators of unknown quality, and must
select one of them to use for some application. In particular, we focus on the setting where an
engineer has access to multiple prompt templates for a given generation task, and must select which
prompt-templates’ generation to use as the final output [29]. Unlike above, we assume the engineer
only has access to one LLM. We study SMOOTHIE-LOCAL and SMOOTHIE-GLOBAL in this regime
using the NLG tasks from Section 5.1. For each task, we manually write between 3 and 5 prompt
templates, varying the wording of instructions and the choice of in-context samples. We analyze
SMOOTHIE applied to two models at different size points: Falcon (1B) [65] and Llama-2 (7B) [92].

Table 3 provides the results. Overall, we find that SMOOTHIE-GLOBAL selects the optimal prompt
2/7 times for Falcon-1B, and 3/7 times for Llama-2. SMOOTHIE-LOCAL and SMOOTHIE-GLOBAL
consistently outperform RANDOM–on 6/7 tasks for Falcon-1b and 6/7 tasks for Llama-2. On 7
task/model combinations, one of either SMOOTHIE-GLOBAL or SMOOTHIE-LOCAL matches or
outperforms a labeled baseline. To better contextualize performance improvements from SMOOTHIE-
GLOBAL, we also compare to the improvement that accompanies increasing model size. Following a
common practice in recent work, we can quantify the extent to which SMOOTHIE-GLOBAL allows
smaller models to match or exceed the performance of larger models [2, 29]. In Figure 4 (Appendix E),
we compare RANDOM and SMOOTHIE-GLOBAL on models from the Pythia suite at four sizes: 410M,
1B, 2.8B, and 6.9B parameters [7]. We observe that SMOOTHIE-GLOBAL substantially improves
performance—on E2E, SMOOTHIE-GLOBAL enables a 410M parameter model to outperform a 6.9B
parameter model.

5.4 Ablations

Finally, we conduct ablations to examine different aspects of SMOOTHIE-GLOBAL and SMOOTHIE-
LOCAL: improving its efficiency, adjusting the neighborhood size, varying the choice of embedding
model, and using different LLM ensembles.

Improving efficiency First, we explain SMOOTHIE’s current efficiency properties. To estimate the
Smoothie weights for routing, we use a simple closed-form procedure that does not require any SGD
or training, as described in Algorithm 1. As a result, SMOOTHIE weights on the entire dataset can
be computed in seconds—for the 7B ensemble, SMOOTHIE-LOCAL on the multi-task datasets takes
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2.14 seconds per 1000 samples, and SMOOTHIE-GLOBAL on the single-task datasets takes under
0.03 seconds per 1000 samples. Moreover, SMOOTHIE does not require any ground-truth annotations;
however, all m model generations per test sample are needed as input to the algorithm. That is, we
need n×m generations for a Dtrain of size n samples.

Fortunately, the need for computing all model generations per test sample can be removed with
a small algorithm tweak, making Smoothie even more efficient and its runtime independent of n.
Suppose we have a held-out set of ntrain train samples with precomputed generations from the models
in the ensemble. For each test sample, we retrieve the most similar train samples, learn the Smoothie
weights for the sample using the corresponding train sample generations, and return the model with
the highest Smoothie weight (i.e., in line 5 in Algorithm 1, KNN is now over a held-out training
dataset). This approach, which we call SMOOTHIE-TRAIN, selects the model for a test sample without
needing model generations for that sample. Only ntrain ×m generations are needed, regardless of
how large the test dataset n is.

We study the NLG tasks, using ntrain = 250 samples. In Table 7 (Appendix E), we evaluate a
version of SMOOTHIE-GLOBAL-TRAIN) and observe that it matches SMOOTHIE-GLOBAL on 12/14
model-dataset pairs, and performs worse on the remaining 2/14 pairs. We also evaluate SMOOTHIE-
LOCAL-TRAIN, on DISTR-ACC and DISTR-ROUGE2 (Table 8) using a neighborhood of size n0 = 20.
We find here that while SMOOTHIE-LOCAL-TRAIN underperforms SMOOTHIE-LOCAL on both the
3B and 7B ensemble for both DISTR-ACC and DISTR-ROUGE2, it still outperforms RANDOM and
remains competitive with supervised baselines.

Neighborhood size We study the impact of n0, and consider SMOOTHIE-LOCAL’s performance for
n0 ∈ [1, 5, 10, 20, 50, 100]. Figure 5 provides performance over DISTR-ACC and Figure 6 provides
performance over DISTR-ROUGE2. Overall, we find that SMOOTHIE-LOCAL’s performance steadily
degrades as n0 increases, and is highest when n0 = 1.

Choice of embeddings We study how the choice of embeddings affects SMOOTHIE-GLOBAL perfor-
mance (Table 9). Specifically, we compare the performance of SMOOTHIE-LOCAL using Sentence-
Bert embeddings (all-mpnet-base-v2) [76] to BGE embeddings (bge-small-en-v1.5) [102].
We observe that SMOOTHIE-LOCAL appears robust to different embeddings—SMOOTHIE-LOCAL
with BGE embeddings still outperforms other labeled and unlabeled baselines. Interestingly, we
observe that certain embedding models appear to yield better performance over certain distribu-
tion/ensemble combinations. For instance, SMOOTHIE-LOCAL with SentenceBERT embeddings
outperforms SMOOTHIE-LOCAL with BGE embeddings on DISTR-ACC for the 3B ensemble and
DISTR-ROUGE2 for the 7B ensemble, while performing worse on DISTR-ROUGE2 for the 3B
ensemble and DISTR-ACC for the 7B ensemble.

Different ensembles Finally, we consider whether SMOOTHIE-GLOBAL can generalize to a wider
array of ensembles (Figure 7). We combine the LLMs contained in the 3B and 7B ensembles into
a single pool, and sample 50 distinct ensembles ranging in size from 4-7 LLMs. For each of the 7
NLG tasks, we evaluate SMOOTHIE-GLOBAL’s ability to identify the best model from within each
ensemble. Across these 350 settings, we find that SMOOTHIE-GLOBAL identifies the best model in
211 of them (60.2% of the time), and one of the two best models in 292 of them (83% of the time).

6 Conclusion

In this paper we study and propose an algorithm for learning label-free routers for generative tasks.
We validate our approach across a variety of evaluation regimes, finding it consistently beats other
unsupervised approaches and often matches/exceeds supervised approaches.

Limitations We discuss several of SMOOTHIE’s limitations. First, its multivariate Gaussian graphical
model currently uses a diagonal covariance matrix. This assumes independent error vectors for each
generation, though SMOOTHIE could be extended to account for dependencies [72, 93]. Additionally,
SMOOTHIE optimizes only for performance without considering cost tradeoffs between large and
small models. Finally, its reliance on embeddings may capture only certain aspects of semantic
similarity. Other embedding models and additional heuristics could be used to create richer input
features for SMOOTHIE.
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A Appendix

In Appendix B, we provide a glossary of notation used in the paper. In Appendix C, we provide
an extended related work, and in Appendix D we provide a proof of Proposition 1, which is used
in deriving the SMOOTHIE algorithm. Finally, in Appendix E we provide additional experimental
results and details.

Code for reproducing our results and using SMOOTHIE is available at https://github.com/
HazyResearch/smoothie.

B Notation

The glossary is given in Table 4 below.

Symbol Used for

V̄ The space of all vocabulary sequences.
x Input text x ∈ X ⊂ V̄ .
y Reference output text y ∈ Y ⊂ V̄ .
G Candidate pool of m LLMs, G = {g1, . . . , gm}, where each gi ∈ G : X → Y

produces a generation gi(x) on input x.
Dtest Unlabeled test dataset Dtest = {xi}ni=1.
route Routing function route : Gm ×X → G that selects the best LLM from G for each sample.
θi(x) Quality score of the ith LLM on test sample x, also used in the graphical model in (1).
zg0 Embedding mapping zg0 : V̄ → Rd for any text sequence, where g0 is an embedding model

such as SentenceBERT [76].
λi(x) The observable embedding of x concatenated with the ith LLM’s generated output,

λi(x) := zg0([x, gi(x)]).
z⋆(x) The latent embedding of x concatenated with unknown reference output, z⋆(x) := zg0([x, y]).
Z Partition function for normalization of (1).
n0 Number of nearest neighbors used to learn θi(x) for x. n0 = n (i.e., the entire test dataset)

corresponds to SMOOTHIE-GLOBAL and n0 < n corresponds to SMOOTHIE-LOCAL.
δ̂ij(x) The average squared Euclidean distance between the ith and jth LLM embeddings over

a neighborhood around x, δ̂ij(x) = 1
n0

∑
x′∈NNn0

(x) ∥λi(x
′)− λj(x

′)∥2.
This is the primary expression used in computing θi(x).

Table 4: Glossary of variables and symbols used in this paper.

C Extended Related Work

LLM Routing The problem of determining how to route samples to various models has been long
studied in statistics [37, 42] as well as Mixture of Experts deep neural networks [25, 82]. These
works focus on how to jointly train the models and router in a stable and efficient manner.

Since many LLMs are now available off-the-shelf, recent works study how routing mechanisms can
be applied at inference time to trained models. Some works involve training task or domain-specific
expert models and then learning a router. The router can be a nearest neighbors algorithm [38], a
neural network [96] that classifies among the different domains corresponding to the experts, or an
extra gate learned when training the expert models [60]. These approaches do not explicitly require
labels, but they require knowledge of what domain is used to train each expert and assume that each
expert is the best model for its corresponding domain, therefore effectively using this mapping as a
form of labels. In contrast, our setting focuses on routing among pre-trained LLMs where we do not
know what models are optimal on what tasks and their samples.

A second category of inference-time routing works studies how to choose among a collection of pre-
trained LLMs, which is the setting that SMOOTHIE focuses on. Several approaches involve training a
meta-model that either scores or ranks how a LLM will perform on a sample [41, 74, 79], all of which
required labeled data to train. MoRE [87] involves training a simpler random forest classifier, using
the rate of agreement among LLMs as one of the features, which is similar to how Smoothie estimates
scores; however, it also requires labeled data to train the classifier. Some approaches [48, 86] do not
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require training routers and simply use nearest neighbor methods. However, these nearest neighbor
methods still use labeled data to determine what training samples each LLM performs the best on.
[55] invokes a trained reward model for the routing mechanism. [21] trains a classification-based
router using the BARTScore metric on LLM generations as pseudolabels; this avoids using manually
labeled data, demonstrating that while a majority of routing methods require labeled data, there exist
some alternatives that do not. We leave it to future work to compare and integrate SMOOTHIE with
other unsupervised approaches.

Finally, complementary to our setting are works that jointly focus on cost minimization as well as
quality of generations. RouterBench [33] creates a benchmark for studying the cost-quality tradeoffs
in routing systems. Optimizing for cost can be done algorithmically, such as in FrugalGPT [13],
AutoMix [58], RouteLLM [63], and [88], as well as via hardware enhancements such as SambaNova
Systems’ Composition of Experts [69].

LLM Ensembling A rich literature has observed that ensembling LLM outputs—across different
prompts or base models—can improve the accuracy of generated predictions. Prior work has
proposed and studied a number of different ensembling algorithms for classification tasks, including
majority-voting [54, 98], weak-supervision [2, 29], boosting [32, 68, 104], and others [49, 66, 80].

More relevant to our work here is a literature on ensembling for generative tasks. One category of
methods rely on an auxilliary sequence-to-sequence models to “fuse” generations from different
prompts or base LLMs [41]. Though recently applied in the context of modern LLMs, the concept
of fusion traces back to older work on summarization [5, 46, 47, 75]. Some techniques combine or
switch among multiple outputs at inference time [34, 36, 59, 83, 97], while others involve averaging
in weight space [35, 38, 95]. Lastly, ensembling can also be approximated by randomly selecting a
model to be used in multi-turn settings [56].

Other LLM Selection Algorithms Beyond the setting of selecting among multiple LLMs, other
works have explored how to select the optimal prompt template from a collection of candidate
prompts. These works can be grouped into two categories. The first category assumes that engineers
have access to labeled data. In the naive case, this labeled data can simply be used to select the
best performing prompt [45, 67, 77]. Another subset of this category focuses on the setting where
new prompts can be generated by selecting in-context demonstrations from a set of labeled samples
(typically a small training set) [22, 53]. Prior work has proposed different methods for identifying the
optimal in-context demonstrations to use, depending on the sample for which the LLM is being used
to produce a prediction for [11, 77, 90, 101, 105, 106]. The second category focuses on zero-label
prompt selection methods, but solely for classification tasks [52, 89, 103]. Prior work here selects
prompts on the basis of mutual information [89], agreement rates between predictions produced by
different prompts [52], and various probability based measures [28, 57, 103].

Weak supervision SMOOTHIE utilizes techniques inspired by weak supervision literature. Weak
supervision aims to programmatically generate labels on an unlabeled dataset by aggregating the
predictions of several weak “voters”, such as heuristics, pre-trained models, and knowledge graphs [71,
73]. It assumes a particular latent variable graphical model and uses its structure to estimate latent
quantities, such as the accuracy of each voter (in our setting, the quality score of each LLM). Typically,
this graphical model is a binary Ising model, as weak supervision has generally been studied in
classification settings [26, 72], where embeddings have been utilized as auxiliary signal but not
modeled explicitly [15, 29]. Weak supervision has been applied to broader settings, such as for
learning rankings, graphs, and manifolds [85, 94]. We derive our estimation procedure from the
Gaussian model in [85], applying it to LLM embeddings. While both SMOOTHIE and [85] use a
multivariate Gaussian model, in SMOOTHIE we apply it to model routing with SBERT embeddings
on natural language datasets, whereas [85] conducts synthetic experiments in hyperbolic spaces
and metric spaces induced by synthetic graphs. Moreover, SMOOTHIE uses nearest neighbor kernel
smoothing to allow for sample-dependent weights—critical for routing—while [85] calculates one
global set of weights over the dataset.

Consistency-based selection Consistency is central to unsupervised selection and aggregation
methods, the simplest being majority vote. While weak supervision methods [26] and SMOOTHIE
heavily rely on notions of voter agreement as depicted in a graphical model, there are several other
consistency-based methods. Minimum Bayes Risk methods [6, 44] selects the generation that has
the highest average similarity (i.e., cosine) with other generations. This is similar to SMOOTHIE,
which routes to the lowest value of (3). If we ignore the subtraction of δjk(x) in (3) and average
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over more than just δij(x) and δik(x), then SMOOTHIE with n0 = 1 is equivalent to [44] Therefore,
SMOOTHIE can be considered as a slightly modified and more general version of this approach.
Another approach [10] relies on consistency between a “global” and “local” embedding for each
generation. They solve an optimization problem that estimates each generation’s quality score by
constructing a loss that enforces that the similarity between the estimated true generation (produced
by a weighted average of candidates) and the candidate generation should be the same according to
both global and local embeddings. In contrast, SMOOTHIE uses one embedding space, relies on a
multivariate Gaussian structure among embeddings, and does not require gradient descent to learn
the quality of each generation.

Test-Time Compute Approaches like model routing, ensembling, and selection can all be seen as
ways of utilizing test-time compute to produce higher-quality generations from a system of LLMs.
Test-time compute can also be utilized over a single LLM via techniques such as those used in
OpenAI’s o1, Chain of Thought, and Rephrase and Respond [20, 64, 99]. Other works have recently
studied how test-time compute scales [9, 12]—finding that producing more generations can often
yield the correct response—and how to combine multiple test-time methods, such as Archon [78]. It
is interesting future work to consider how SMOOTHIE can be integrated with other test-time compute
techniques.

D Proof of Proposition 1

We provide a proof of proposition 1, which is a direct property of multivariate Gaussians that is also
presented in [85]. We first expand E

[
∥λi(x)− λj(x)∥2

]
:

E
[
∥λi(x)− λj(x)∥2

]
= E

[
∥(λi(x)− z⋆(x))− (λj(x)− z⋆(x))∥2

]
(5)

= E
[
∥λi(x)− z⋆(x)∥2

]
+ E

[
∥λj(x)− z⋆(x)∥2

]
− 2E

[
(λi(x)− z⋆(x))⊤(λj(x)− z⋆(x))

]
Let λi,k(x) be the kth element of the λi(x) embedding, and similarly define z⋆k(x). Note that since Σ
is diagonal, we can write

Cov [λi,k(x)− z⋆k(x), λj,k(x)− z⋆k(x)]

= E [(λi,k(x)− z⋆k(x)) · (λj,k(x)− z⋆k(x))]− E [λi,k(x)− z⋆k(x)]E [λj,k(x)− z⋆k(x)]

= 0

for all k ∈ [d]. Since µ = 0⃗, we thus have that E [(λi,k(x)− z⋆k(x)) · (λj,k(x)− z⋆k(x))] = 0 for all
k ∈ [d], which implies that E

[
(λi(x)− z⋆(x))⊤(λj(x)− z⋆(x))

]
= 0. Plugging this into (5), we

have

E
[
∥λi(x)− λj(x)∥2

]
= E

[
∥λi(x)− z⋆(x)∥2

]
+ E

[
∥λj(x)− z⋆(x)∥2

]
. (6)

E Additional Experiments and Details

This section contains additional details on experiments discussed in Section 5.

E.1 Datasets and Models

Table 5 provides links to the Huggingface datasets used for each task. For E2E, CNN/DailyMail,
XSum, and Web NLG we measure performance using rouge2. For SQuAD, TriviaQA, and Definition
Extraction we measure using “accuracy.” A model generation is treated as “correct” if if contains the
answer, and incorrect otherwise [1].

21



Dataset name Huggingface URL
E2E https://huggingface.co/datasets/e2e_nlg
CNN/DailyMail https://huggingface.co/datasets/cnn_dailymail
SQuAD https://huggingface.co/datasets/hazyresearch/based-squad
XSum https://huggingface.co/datasets/EdinburghNLP/xsum
TriviaQA https://huggingface.co/datasets/mandarjoshi/trivia_qa
Web NLG https://huggingface.co/datasets/web_nlg
Definition Extraction https://huggingface.co/datasets/nguha/legalbench

Table 5: Datasets used.

Table 6 contains links for all models used.

Model name Huggingface URL
Pythia-410M https://huggingface.co/EleutherAI/pythia-410m
Pythia-1B https://huggingface.co/EleutherAI/pythia-1b
Pythia-2.8B https://huggingface.co/EleutherAI/pythia-2.8b
Pythia-6.9B https://huggingface.co/EleutherAI/pythia-6.9b
Gemma-2B https://huggingface.co/google/gemma-2b-it
Incite-3B https://huggingface.co/togethercomputer/RedPajama-INCITE-Instruct-3B-v1
Dolly-3B https://huggingface.co/databricks/dolly-v2-3b
Llama-2-7B https://huggingface.co/meta-llama/Llama-2-7b-hf
Mistral-7B https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
Vicuna-7B https://huggingface.co/lmsys/vicuna-7b-v1.5
Gemma-7B https://huggingface.co/google/gemma-7b
Nous Capybara https://huggingface.co/NousResearch/Nous-Capybara-7B-V1.9
Phi-2 https://huggingface.co/microsoft/phi-2
Llema-7B https://huggingface.co/EleutherAI/llemma_7b

Table 6: Huggingface model URLs.

For the Alpaca leaderboard experiments, we run each trial by sampling 5 models from the following
set of 10: Nanbeige-Plus-Chat-v0.1, claude-2, Qwen1.5-110B-Chat, yi-large-preview,
gemini-pro, Meta-Llama-3-70B-Instruct, Ein-70B-v0.1, mistral-large-2402,
Storm-7B, FsfairX-Zephyr-Chat-v0.1.

E.2 Additional Results

CNN Def. Ext. E2E SQuAD TriviaQA WebNLG XSum

3B
RANDOM 12.9 52.4 27.3 59.6 32.7 23.4 4.5

SMOOTHIE-GLOBAL 14.3 61.5 31.8 60.7 32.1 30.7 4.5
SMOOTHIE-GLOBAL-TRAIN 14.3 61.5 24.7 60.7 32.1 30.7 4.5

BEST-ON-VAL 13.0 60.5 31.1 66.4 38.7 30.3 5.3

7B
RANDOM 13.7 58.5 35.3 67.9 59.3 44.1 6.9

SMOOTHIE-GLOBAL 14.5 70.9 36.9 76.2 68.3 45.9 8.4
SMOOTHIE-GLOBAL-TRAIN 14.5 70.9 36.5 76.2 68.3 45.9 8.4

BEST-ON-VAL 14.5 69.4 36.7 74.0 65.8 48.3 8.3

Table 7: We compare SMOOTHIE-GLOBAL to SMOOTHIE-GLOBAL-TRAIN, for which weights are learned on a
hold-out set. We provide results from baseline methods for reference. Underlined values are the best performing
unsupervised methods. Bold values are the best performing overall methods. We report rouge2 scores for CNN,
XSum, WebNLG, and E2E, and accuracy for the rest. All metrics are scaled to 0-100.
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Figure 4: We compare RANDOM (blue) and SMOOTHIE-GLOBAL (orange) for prompt-selection on different
sized models in the Pythia suite. The x-axis denotes model size, and the y-axis denotes performance (either
rouge2 or accuracy).

3B 7B

Method DISTR-ACC DISTR-ROUGE2 DISTR-ACC DISTR-ROUGE2

RANDOM 48.7 17.0 65.4 25.0

PAIRRM 53.9 19.0 71.8 25.5

LABELED-KNN 51.0 16.8 71.7 26.2

BEST-MODEL 52.3 18.1 73.2 26.4

SMOOTHIE-GLOBAL 51.3 18.1 66.5 26.1

SMOOTHIE-LOCAL 58.7 20.2 75.0 26.9

SMOOTHIE-GLOBAL-TRAIN 51.3 18.1 66.5 26.1

SMOOTHIE-LOCAL-TRAIN 50.7 18.8 70.9 26.0

Table 8: We compare SMOOTHIE-LOCAL to SMOOTHIE-LOCAL-train, for which weights are learned on a
hold-out set, on the 3B and 7B ensembles for multi-task distributions. DISTR-ACC and DISTR-ROUGE2 are
measured with accuracy and rouge2 respectively. Bold values indicate the best performing method for each
dataset and model size. Metrics are scaled to 0-100. Other baseline methods are provided for comparison.
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3B 7B

Method DISTR-ACC DISTR-ROUGE2 DISTR-ACC DISTR-ROUGE2

RANDOM 48.7 17.0 65.4 25.0

PAIRRM 53.9 19.0 71.8 25.5

LABELED-KNN 51.0 16.8 71.7 26.2

BEST-MODEL 52.3 18.1 73.2 26.4

SMOOTHIE-LOCAL (BGE-small [102]) 59.3 19.7 74.6 27.1

SMOOTHIE-LOCAL (SBERT [76]) 58.7 20.2 75.0 26.9

Table 9: Comparing SMOOTHIE-LOCAL with different embeddings on the 3B and 7B ensembles for multi-task
distributions. DISTR-ACC and DISTR-ROUGE2 are measured with accuracy and rouge2 respectively. Bold
values indicate the best performing method for each dataset and model size. Metrics are scaled to 0-100.

Figure 5: We measure how SMOOTHIE-LOCAL’s performance on DISTR-ACC changes as n0 changes.
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Figure 6: We measure how SMOOTHIE-LOCAL’s performance on DISTR-ROUGE2 changes as n0 changes.

Figure 7: We evaluate SMOOTHIE-GLOBAL’s ability to identify the best model by randomly sampling 50
ensembles of size 4-7 LLMs from a pool of the LLMs contained in the 3B and 7B ensembles. We apply
SMOOTHIE-GLOBAL to select the best LLM from within each of these ensembles across the 7 NLG tasks, and
measure the rank (relative to the ensemble) of the LLM selected by SMOOTHIE-GLOBAL.

Method ChatGPT-Rank (↓)

RANDOM 5.96

SMOOTHIE-GLOBAL 3.91

Table 10: Results for SMOOTHIE-GLOBAL and baselines on MixInstruct.
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Method Accuracy

RANDOM 28.4

BEST-ON-VAL 37.5

SMOOTHIE-GLOBAL 37.5

Table 11: Results for SMOOTHIE-GLOBAL and baselines on GSM8K. We report accuracy, with scores scaled to
0-100.

Figure 8: We construct a histogram over the rank of the LLM selected by SMOOTHIE-GLOBAL across both the
3B and 7B ensembles, for 7 NLG tasks.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
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of the paper (regardless of whether the code and data are provided or not)?
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6. Experimental Setting/Details
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
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Answer: [NA]
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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